ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 18 (1982), S. 49-65 
    ISSN: 0730-2312
    Keywords: erythrocyte membrane ; cytoskeleton ; membrane protein ; microtubule-associated protein ; hemolytic anemia ; hereditary spherocytosis ; hereditary elliptocytosis ; spectrin ; band 3 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Spectrin, the major cytoskeletal protein in erythrocytes, is localized on the inner membrane surface in association with membrane-spanning glycoproteins and with intramembrane particles. The presence of a specific, high-affinity protein binding site for spectrin on the cytoplasmic surface of the membrane has been established by measurement of reassociation of spectrin with spectrin-depleted inside-out vesicles. A 72,000 Mr proteolytic fragment of this attachment protein has been purified, which bound to spectrin in solution and competed for reassociation of spectrin with vesicles. A 215,000 Mr polypeptide has been identified as the precursor of the spectrin-binding fragment. The membrane attachment protein for spectrin was named ankyrin, and has been purified and characterized. Ankyrin has been demonstrated to be tightly associated in detergent extracts of vesicles with band 3, a major membrane-spanning polypeptide, and to bind directly to a proteolytic fragment derived from the cytoplasmic domain of band 3. Ankyrin is thus an example of a protein that directly links a cytoplasmic structural protein to an integral membrane protein. The organization of the erythrocyte membrane has implications for more complex cell types since immunoreactive forms of ankyrin distinct from myosin or filamin have been detected by radioimmunoassay in a variety of cells and tissues. Indirect immunofluorescent staining of cultured cells reveals immunoreactive forms of ankyrin in a cytoplasmic meshwork and in a punctate distribution over nuclei. The staining changes dramatically during mitosis, with concentration of stain at the spindle poles in metaphase and intense staining of the cleavage furrow during cytokinesis.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Supramolecular Structure 8 (1978), S. 215-221 
    ISSN: 0091-7419
    Keywords: spectrin ; erythrocyte membrane ; membrane attachment site ; membrane protein mobility ; Life Sciences ; Molecular Cell Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Interactions between spectrin and the inner surface of the human erythrocyte membrane have been implicated in the control of lateral mobility of the integral membrane proteins. We report here that incubation of “leaky” erythrocytes with a water-soluble proteolytic fragment containing the membrane attachment site for spectrin achieves a selective and controlled dissociation of spectrin from the membrane, and increases the rate of lateral mobility of fluorescein isothiocyanate-labeled integral membrane proteins (〉 70% of label in band 3 and PAS-1). Mobility of membrane proteins is measured as an increase in the percentage of uniformly fluorescent cells with time after fusion of fluorescent with nonfluorescent erythrocytes by Sendai virus. The cells are permeable to macromolecules since virus-fused erythrocytes lose most of their hemoglobin. The membrane attachment site for spectrin has been solubilized by limited proteolysis of inside-out erythrocyte vesicles and has been purified (V). Bennett, J Biol Chem 253:2292 (1978). This 72,000-dalton fragment binds to spectrin in solution, competitively inhibits association of 32P-spectrin with inside-out vesicles with a Ki of 10-7M, and causes rapid dissociation of 32P-spectrin from vesicles. Both acid-treated 72,000-dalton fragment and the 45,000 dalton-cytoplasmic portion of band 3, which also was isolated from the proteolytic digest, have no effect on spectrin binding, release, or membrane protein mobility. The enhancement of membrane protein lateral mobility by the same polypeptide that inhibits binding of spectrin to inverted vesicles and displaces spectrin from these vesicles provides direct evidence that the interaction of spectrin with protein components in the membrane restricts the lateral mobility of integral membrane proteins in the erythrocyte.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...