ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-06-16
    Description: Much of contemporary landslide research is concerned with predicting and mapping susceptibility to slope failure. Many studies rely on generalised linear models with environmental predictors that are trained with data collected from within and outside of the margins of mapped landslides. Whether and how the performance of these models depends on sample size, location, or time remains largely untested. We address this question by exploring the sensitivity of a multivariate logistic regression—one of the most widely used susceptibility models—to data sampled from different portions of landslides in two independent inventories (i.e. a historic and a multi-temporal) covering parts of the eastern rim of the Fergana Basin, Kyrgyzstan. We find that considering only areas on lower parts of landslides, and hence most likely their deposits, can improve the model performance by 〉10% over the reference case that uses the entire landslide areas, especially for landslides of intermediate size. Hence, using landslide toe areas may suffice for this particular model and come in useful where landslide scars are vague or hidden in this part of Central Asia. The model performance marginally varied after progressively updating and adding more landslides data through time. We conclude that landslide susceptibility estimates for the study area remain largely insensitive to changes in data over about a decade. Spatial or temporal stratified sampling contributes only minor variations to model performance. Our findings call for more extensive testing of the concept of dynamic susceptibility and its interpretation in data-driven models, especially within the broader framework of landslide risk assessment under environmental and land-use change.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Keywords: ddc:551.3 ; Landslide susceptibility ; Logistic regression ; Southern Kyrgyzstan ; Landslide inventory ; Remote sensing
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-15
    Description: Abstract
    Description: The file corresponds to a code written using the R software version 4.0.5 (R Core Team, 2021). We used a Bayesian robust regression to predict the posterior probability P(L) at which a given location yi in our study areas (north Patagonia, Chile) is classified as part of a landslide source, transport, or deposition area. We used the NUTS sampling scheme implemented in the STAN probabilistic programming language (Carpenter et al., 2017) to draw samples from the joint posterior distribution via the R package brms (Bürkner, 2017). We ran four independent Hamiltonian Monte Carlo chains based on 2000 iterations including 500 warm-up samples and checked each chain for convergence. We assessed the performance of this classifier based on its posterior predictive distribution and recorded the fraction of correct classifications compared to the observed frequency of landslides in all study areas and for all landform types. We find that higher crown openness and wind speeds credibly predict higher probabilities of detecting landslides regardless of topographic location, though much better in low-order channels and on midslope locations than on open slopes. Wind speed has less predictive power in areas that were impacted by tephra fall from recent volcanic eruptions, while the influence of forest cover in terms of crown openness remains.
    Description: Other
    Description: Copyright (C) 2021 University Potsdam (Oliver Korup). Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
    Keywords: Landslide prediction ; EARTH SCIENCE 〉 LAND SURFACE 〉 LANDSCAPE 〉 LANDSCAPE PROCESSES ; EARTH SCIENCE SERVICES 〉 MODELS 〉 GEOLOGIC/TECTONIC/PALEOCLIMATE MODELS
    Type: Model , Model
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...