ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: Oxygen production from a lunar rock has been experimentally demonstrated for the first time. A 10 g sample of high-Ti basalt 70035 was reduced with hydrogen in seven experiments at temperatures of 900-1050 C and pressures of 14.7-150 psia. In all experiments, water evolution began almost immediately and was essentially complete in tens of minutes. Oxygen yields ranged from 2.93 to 4.61% of the starting sample weight, and showed weak dependence on temperature and pressure. Analysis of the solid samples demonstrated total reduction of Fe(2+) in ilmenite and small degrees of reduction in olivine and pyroxene. Ti O2 was also partially reduced to one or more suboxides. Data from these experiments provide a basis for predicting the yield of oxygen from lunar basalt as well as new constraints on natural reduction in the lunar regolith.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; E5; p. 10,887-10,897
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: We have reduced high-titanium lunar mare soil and iron-rich lunar volcanic glass with hydrogen at temperatures of 900-1100 C. Ilmenite is the most reactive phase in the soil, exhibiting rapid and complete reduction at all temperatures. Ferrous iron in the glass is extensively reduced concurrent with partial crystallization. In both samples pyroxene and olivine undergo partial reduction along with chemical and mineralogical modifications. High-temperature reduction provides insight into the optical and chemical effects of lunar soil maturation, and places constraints on models of that process. Mare soil and volcanic glass are attractive feedstocks for lunar oxygen production, with achievable yields of 2-5 wt%.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; E11; p. 23,173-23,185
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: Simulants of lunar rocks and soils with appropriate properties, although difficult to produce in some cases, will be essential to meeting the system requirements for lunar exploration. In order to address this need a new lunar regolith simulant, JSC-1, has been developed. JSC-1 is a glass-rich basaltic ash which approximates the bulk chemical composition and mineralogy of some lunar soils. It has been ground to produce a gain size distribution approximating that of lunar regolith samples. The simulant is available in large quantities (greater than 2000 lb; 907 kg). JSC-1 was produced specifically for large- and medium-scale engineering studies in support of future human activities on the Moon. Such studies include material handling, construction, excavation, and transportation. The simulant is also appropriate for research on dust control and spacesuit durability. JSC-1 can be used as a chemical or mineralogical analog to some lunar soils for resource studies such as oxygen or metal production, sintering, and radiation shielding.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Twenty-Fourth Lunar and Planetary Science Conference. Part 2: G-M; p 963-964
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: The proposed Pathfinder landing site presents the opportunity to determine chemical and mineralogical compositions of an Elysium lava flow. The flow is part of a geologic unit of planetary significance. The proposed site appears suitable for landing, and lava surfaces should be accessible to the Pathfinder instruments. By analogy to terrestrial flood basalts, any lava analyzed by Pathfinder is likely to be representative of the entire Elysium province.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Mars Pathfinder Landing Site Workshop; p 15-16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...