ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • LIFE SCIENCES (GENERAL)  (1)
  • Oceanography  (1)
  • decomposition  (1)
  • 1
    ISSN: 1573-515X
    Keywords: soil respiration ; soil organic matter ; decomposition ; carbon-13 ; soil incubations ; atmospheric CO2 ; Hawaii
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract We measured respiration and δ13C values of respiredand soil carbon in long-term incubations of soils from two forests andthree pastures along an altitudinal gradient in Hawaii. CO2fluxes early in the incubations decreased rapidly, and then stabilizedat approximately 20% of initial values for sevenmonths. We suggest that the rapid drop and subsequent stabilizationof respiration reflects a change in the dominant source of theCO2 from labile (active) to much more recalcitrantpools of soil organic matter (SOM). Estimates of active SOM weremade by integrating all of the carbon respired in excess of thatattributable to respiration of the intermediate SOM pool; thesevalues ranged from 0.7–4.3% of total soil C.δ13C values for carbon respired from the pasturesoils showed that older, forest-derived C contributed an increasingfraction of total soil respiration with time. Initial and late-stagerespiration responded similarly to changes in temperature, suggestingthat intermediate SOM is as sensitive to temperature as the activefraction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: The abundance ratios of the stable isotopes of light elements such as carbon and sulfur can differ between various naturally-occurring chemical compounds. If coexisting compounds have achieved mutual chemical and isotopic equilibrium, then the relative isotopic composition can record the conditions at which equilibrium was last maintained. If coexisting chemical compounds indeed formed simultaneously but had not achieved mutual equilibrium, then their relative isotopic compositions often reflect the conditions and mechanisms associated with the kinetically controlled reactions responsible for their production. In the context of Mars, the stable isotopic compositions of various minerals might record not only the earlier environmental conditions of the planet, but also whether or not the chemistry of life ever occurred there. Two major geochemical reservoirs occur in Earth's crust, both for carbon and sulfur. In rocks formed in low temperature sedimentary environments, the oxidized forms of these elements tend to be enriched in the isotope having the larger mass, relative to the reduced forms. In sediments where the organics and sulfides were formed by biological processes, these isotopic contrasts were caused by the processes of biological CO2 fixation and dissimilatory sulfate reduction. Such isotopic contrasts between oxidized and reduced forms of carbon and sulfur are permitted by thermodynamics at ambient temperatures. However, nonbiological chemical reactions associated with the production of organic matter and the reduction of organics and sulfides are extremely slow at ambient temperatures. Thus the synthesis of organics and sulfides under ambient conditions illustrates life's profound role as a chemical catalyst that has altered the chemistry of Earth's crust. Because the stable isotopes of carbon and sulfur can reflect their chemistry, they are useful probes of the Martian surface.
    Keywords: LIFE SCIENCES (GENERAL)
    Type: Exobiology and Future Mars Missions; p 15-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: Intertidal cyanobacterial mats (Lyngbya-dominated) are contrasted with mats (Microcoleus-dominated) that grow in subtidal (0.7m water depth) hypersaline (90-110 permil) environments. In benthic chamber experiments conducted in Oct., 1999, mats exhibited greater net uptake of dissolved inorganic carbon (DIC) from overlying water during the daylight period than Microcoleus mats (e.g., 200 vs 120 mmol C/m. at 26 deg C, respectively). Net DIC release at night was similar for both mats (approx. 80 mmol C/m). Daytime net O2 release by Lyngby mats exceeded that by Microcoleus mats (150 vs 100 mmol O2/m), and O2 uptake at night was comparable for both mats (60-80 mmol O2/m). Nonphotosynthetic populations are more prominent within the subtidal versus intertidal mats, and accordingly exhibited greater internal 02 uptake and DIC production during the day. Over 24 hours, Lyngby-dominated mats exhibited greater net uptake of DIC than subtidal Microcoleus mats, consistent with these intertidal mats being "pioneer" communities that constantly recover from periodic physical disruption in energetic environments. The Microcoleus-dominated mats achieve steady-state mat thicknesses by balancing primary production against diagenetic decomposition of cellular and extracellular organic constituents.
    Keywords: Oceanography
    Type: American Society for Limnology and Oceanography 2001: Aquatic Sciences Meeting; Feb 12, 2001 - Feb 15, 2001; Albuquerque, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...