ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Key words Action potential model  (1)
  • hydrogen sulfide  (1)
  • 1
    ISSN: 1432-1017
    Keywords: Key words Action potential model ; Inward rectifier ; Sodium-potassium pump ; Tubular potassium concentration ; Muscle fatigue
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract During prolonged activity the action potentials of skeletal muscle fibres change their shape. A model study was made as to whether potassium accumulation and removal in the tubular space is important with respect to those variations. Classical Hodgkin-Huxley type sodium and (potassium) delayed rectifier currents were used to determine the sarcolemmal and tubular action potentials. The resting membrane potential was described with a chloride conductance, a potassium conductance (inward rather than outward rectifier) and a sodium conductance (minor influence) in both sarcolemmal and tubular membranes. The two potassium conductances, the Na-K pump and the potassium diffusion between tubular compartments and to the external medium contributed to the settlement of the potassium concentration in the tubular space. This space was divided into 20 coupled concentric compartments. In the longitudinal direction the fibre was a cable series of 56 short segments. All the results are concerned with one of the middle segments. During action potentials, potassium accumulates in the tubular space by outward current through both the delayed and inward rectifier potassium conductances. In between the action potentials the potassium concentration decreases in all compartments owing to potassium removal processes. In the outer tubular compartment the diffusion-driven potassium export to the bathing solution is the main process. In the inner tubular compartment, potassium removal is mainly effected by re-uptake into the sarcoplasm by means of the inward rectifier and the Na-K pump. This inward transport of potassium strongly reduces the positive shift of the tubular resting membrane potential and the consequent decrease of the action potential amplitude caused by inactivation of the sodium channels. Therefore, both potassium removal processes maintain excitability of the tubular membrane in the centre of the fibre, promote excitation-contraction coupling and contribute to the prevention of fatigue.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 60 (1998), S. 147-155 
    ISSN: 0006-3592
    Keywords: hydrogen sulfide ; elemental sulfur ; desulfurization ; Thiobacilli ; redox potential ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The investigations described show that the formation of elemental sulfur from the biological oxidation of sulfide can be optimized by controling the redox state of the solution. The nonsoluble sulfur can be removed by gravity sedimentation and re-used as a raw material, i.e., in bioleaching processes. It was shown that, by supplying an almost stoichiometrical amount of oxygen to the recirculated gas phase, the formation of sulfate is minimized. The redox potential is mainly determined by the sulfide concentration because this compound has a high standard exchange current density with the platinum electrode surface. By maintaining a particular redox setpoint value, in fact, the reactor becomes a “sulfide-stat.” It was shown that in a sulfide-oxidizing bioreactor the measured redox potential, using a polished redox electrode, is kinetically determined rather than thermodynamically. The optimal redox value for sulfur formation is between -147 and -137 mV (H2 reference electrode, 30°C, pH 8). The presented results are currently used for controling several full-scale installations, which desulfurize biogas and high-pressure natural gas. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 60: 147-155, 1998.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...