ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Instrumentation and Photography; Geophysics; Statistics and Probability; Communications and Radar  (1)
  • Meteorology and Climatology; Earth Resources and Remote Sensing  (1)
  • 1
    Publication Date: 2019-07-13
    Description: Vertical profiles of 0.532 m aerosol particle extinction coefficient and linear volume depolarization ratio are described for Southeast Asia and the Maritime Continent. Quality-screened and cloud-cleared Version 3.01 Level 2 NASA Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) 5-km Aerosol Profile datasets are analyzed from 2007 to 2009. Numerical simulations from the U.S. Naval Aerosol Analysis and Predictive System (NAAPS), featuring two-dimensional variational assimilation of NASA Moderate Resolution Imaging Spectroradiometer and Multi-angle Imaging Spectro- Radiometer quality-assured datasets, combined with regional ground-based lidar measurements, are considered for assessing CALIOP retrieval performance, identifying bias, and evaluating regional representativeness. CALIOP retrievals of aerosol particle extinction coefficient and aerosol optical depth (AOD) are high over land and low over open waters relative to NAAPS (0.412/0.312 over land for all data points inclusive, 0.310/0.235 when the per bin average is used and each is treated as single data points; 0.102/0.151 and 0.086/0.124, respectively, over ocean). Regional means, however, are very similar (0.180/0.193 for all data points and 0.155/0.159 when averaged per normalized bin), as the two factors offset one another. The land/ocean offset is investigated, and discrepancies attributed to interpretation of particle composition and a-priori assignment of the extinction-to-backscatter ratio ("lidar ratio") necessary for retrieving the extinction coefficient from CALIOP signals. Over land, NAAPS indicates more dust present than CALIOP algorithms are identifying, indicating a likely assignment of a higher lidar ratio representative of more absorptive particles. NAAPS resolvesmore smoke overwater than identified with CALIOP, indicating likely usage of a lidar ratio characteristic of less absorptive particles to be applied that biases low AOD there. Over open waters except within the Bay of Bengal, aerosol particle scattering is largely capped below 1.5 km MSL, though ground-based lidar measurements at Singapore differ slightly from this finding. Significant aerosol particle presence over land is similarly capped near 3.0 km MSL over most regions. Particle presence at low levels regionally, except over India, is dominated by relatively non-depolarizing particles. Industrial haze, sea salt droplets and fresh smoke are thus most likely present.
    Keywords: Meteorology and Climatology; Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN11674 , Atmospheric Research (ISSN 0169-8095); 122; 520-543
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) version 4.10 (V4) products were released in November 2016 with substantial enhancements. There have been improvements in the V4 CALIOP level 2 aerosol optical depth (AOD) compared to V3 (version 3) due to various factors. AOD change from V3 to V4 is investigated by separating factors. CALIOP AOD was compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Robotic Network (AERONET) for both V3 and V4.
    Keywords: Instrumentation and Photography; Geophysics; Statistics and Probability; Communications and Radar
    Type: NF1676L-27821 , Annual American Astrophysical Union (AGU) Fall Meeting 2017; Dec 11, 2017 - Dec 15, 2017; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...