ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 15 (1990), S. 88-98 
    ISSN: 0886-1544
    Keywords: tau ; MAP2 ; dynamic instability ; microtubule nucleation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: In this paper, we report on the effect of brain microtubule-associated proteins (MAPs) on the dynamic instability of microtubules as well as on the nucleation activity of purified centrosomes. Under our experimental conditions, tau and MAP2 have similar effects on microtubule nucleation and dynamic instability. Tau increases the apparent elongation rate of microtubules in proportion to its molar ratio to tubulin, and we present evidence indicating that this is due to a reduction of microtubule instability rather than to an increase of the on rate of tubulin subunits at the end of growing microtubules. Increasing the molar ratio of tau over tubulin leads also to an increase in the average number of microtubules nucleated percentrosome. This number remains constant with time. This suggests that the number of centrosome-nucleated microtubules at steady state can be determined by factors that are not necessarily irreversibly bound to centrosomes but, rather, affect the dynamic properties of microtubules.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1615-6102
    Keywords: Paramecium ; Microtubule diversity ; Cellular morphogenesis ; Immunofluorescence ; Tubulin post-translational modification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Ciliates are highly differentiated cells which display extensive deployment of microtubular systems. Because genetic diversity of tubulin is extremely reduced in these cells, microtubule diversity is mostly generated at the post-translational level either through direct modification of tubulin or through the binding of associated proteins to microtubules. We have undertaken a systematic exploration of microtubule diversity in ciliates by way of production of monoclonal antibodies. Previously we reported the biochemical characterization of these antibodies. In addition to antibodies directed against primary sequences, we obtained antibodies directed against post-translational modifications. In this paper, we report a detailed analysis of the distribution of the various epitopes on the microtubular networks ofParamecium, both in interphase cells and during division morphogenesis. Each of these antibodies decorates a subset of microtubules. Acetylation, recognized by antibodies TEU 318 and TEU 348, is detected on stable microtubules early after microtubule assembly. Epitopes recognized by two other antibodies (TAP 952 and AXO 58) are found on a subset of stable microtubules; in addition, the TAP 952 antibody is also found on labile microtubules; both epitopes are detected as soon as microtubule assembly occurs. In contrast, the epitope of the antibody, AXO 49, is associated with only a restricted subset of stable microtubules in the interphase cell, and is detected a lag-time after microtubule assembly during division morphogenesis. These data show that microtubule diversity is generated through a time-dependent sequence and according to a definite spatial pattern.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...