ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • INSTRUMENTATION AND PHOTOGRAPHY  (2)
  • Inorganic, Organic and Physical Chemistry; Instrumentation and Photography; Lunar and Planetary Science and Exploration  (1)
  • 1
    Publication Date: 2013-08-31
    Description: Differential Scanning Calorimetry (DSC) is the quantitative measurement of the enthalpic response of a material to a systematic change in temperature. In practice, the heat flow into or outward from a sample is measured as the sample is heated or cooled at a carefully controlled rate. DSC superficially resembles, but is not the same as differential thermal analysis (DTA), which is the measurement of temperature differences between a sample and reference material as the pair is heated or cooled. The fundamental properties measured by DSC are enthalpies and temperatures of phase transitions and constant-pressure heat capacities. Depending on instrument design and the nature of the sample, high-quality DSC analyses can be obtained on only a few milligrams of solid materials. DSC requires direct contact with the sample and generally degrades, if not destroys, the sample as a consequence of heating. In laboratory applications, it is common to subject the gaseous effluent from the DSC to analysis by a separate evolved-gas analyzer (EGA).
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: JPL, Proceedings of the Workshop on Microtechnologies and Applications to Space Systems; p 121-12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-01-25
    Description: Physical and chemical interactions between the surface and atmosphere of Mars can be expected to embody a strong cause-and-effect relationship with the minerals comprising the martian regolith. Many of the minerals in soils and sediments are probably products of chemical weathering (involving surface/atmosphere or surface/hydrosphere reactions) that could be expected to subsequently influence the sorption of atmospheric gases and water vapor. Therefore, identification of the minerals in martian surface soils and sediments is essential for understanding both past and present interactions between the Mars surface and atmosphere. Clearly, the most definitive mineral analyses would be achieved with well-preserved samples returned to Earth-based laboratories. In advance of a Mars sample return mission, however, significant progress could be made with in situ experiments that fill current voids in knowledge about the presence or abundance of key soil minerals such as clays (layered-structured silicates), zeolites, and various salts, including carbonates. TAPS is intended to answer that challenge by providing first-order identification of soil and sediment minerals.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Lunar and Planetary Inst., MSATT Workshop on Innovative Instrumentation for the In Situ Study of Atmosphere-Surface Interactions on Mars; p 4-5
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Nitrate was recently detected in Gale Crater sediments on Mars at abundances up to approximately 600 mg/kg, confirming predictions of its presence at abundances consistent with models based on impact-generated nitrate and other sources of fixed nitrogen. Terrestrial Mars analogs, Mars meteorites, and other solar system materials help establish a context for interpreting in situ nitrate measurements on Mars, particularly in relation to other cooccuring salts. We compare the relative abundance of nitrates to oxychlorine (chlorate and/or perchlorate, hereafter (per)chlorate) salts on Mars and Earth. The nitrate/(per)chlorate ratio on Mars is greater than 1, significantly lower than on Earth (nitrate/(per)chlorate greater than 10(exp.3)), suggesting not only the absence of biological activity but also different (per)chlorate formation mechanisms on Mars than on Earth.
    Keywords: Inorganic, Organic and Physical Chemistry; Instrumentation and Photography; Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN45627 , Geophysical Research Letters (ISSN 0094-8276) (e-ISSN 1944-8007); 44; 6; 2643-2651
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...