ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of atmospheric chemistry 7 (1988), S. 261-285 
    ISSN: 1573-0662
    Keywords: Hydrocarbons ; halocarbons ; hydrogen chloride ; chlorine atoms ; nitrosyl chloride ; reactive nitrogen ; photochemistry ; troposphere ; stratosphere
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract A one-dimensional photochemical model was used to explore the role of chlorine atoms in oxidizing methane and other nonmethane hydrocarbons (NMHCs) in the marine troposphere and lower stratosphere. Where appropriate, the model predictions were compared with available measurements. Cl atoms are predicted to be present in the marine troposphere at concentrations of approximately 103 cm-3, mostly as a consequence of the reaction of OH with HCl released from sea spray. Despite this low abundance, our results indicate that 20 to 40% of NMHC oxidation in the troposphere (0–10 km) and 40 to 90% of NMHC oxidation in the lower stratosphere (10–20 km) is caused by Cl atoms. At 15 km, NMHC-Cl reactions account for nearly 80% of the PAN produced. The model was also used to test the longstanding hypothesis that NOCl is an intermediate to HCl formation from sea salt aerosols. It was found that the NOCl concentration required (∼10 ppt) would be incompatible with field observations of reactive nitrogen and ozone abundance. Chlorine nitrate (ClONO2) and methyl nitrate (CH3ONO2) were shown to be minor components of the total NO y abundance. Heterogeneous reactions that might enhance photolysis of halocarbons or convert ClONO2 to HOCl or Cl2 were determined to be relatively unimportant sources of Cl atoms. Specific and reliable measurements of HCl and other reactive chlorine species are needed to better assess their role in tropospheric chemistry.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-19
    Description: The present biosphere is shielded from harmful solar near ultraviolet (UV) radiation by atmospheric ozone. It is suggested that elemental sulfur vapor could have played a similar role in an anoxic, ozone-free, primitive atmosphere. Sulfur vapor would have been produced photochemically from volcanogenic SO2 and H2S. It is composed of ring molecules, primarily S8, that absorb strongly throughout the near UV, yet are expected to be relatively stable against photolysis and chemical attack. It is also insoluble in water and would thus have been immune to rainout or surface deposition over the oceans. Since the concentration of S8 in the primitive atmosphere would have been limited by its saturation vapor pressure, surface temperatures of 45 C or higher, corresponding to carbon dioxide partial pressures exceeding 2 bars, are required to sustain an effective UV screen. A warm, sulfur-rich, primitive atmosphere is consistent with inferences drawn from molecular phylogeny, which suggest that some of the earliest organisms were thermophilic bacteria that metabolized elemental sulfur.
    Keywords: LIFE SCIENCES (GENERAL)
    Type: Origins of Life and Evolution of the Biosphere (ISSN 0169-6149); 19; 2, 19
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...