ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2242
    Keywords: Hordeum ; Grain ; Isozymes ; Ribosomal DNA ; Genetic adaptation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Grain isozyme and ribosomal DNA (rDNA) variability was examined in Hordeum spontaneum populations sampled from 27 geographical sites in Israel. Considerable phenotypic variability was observed with variants of ADH1, EST3, EST10, BMY1 and WSP detected, which are not available in the H. vulgare gene pool. Seven new rDNA phenotypes were detected in the H. spontaneum populations. Shannon's index of diversity was used to partition the total phenotypic variation into between and within population components. Most of the variation occurred between H. spontaneum populations. The distribution of both grain isozyme and rDNA phenotypes was non-random and correlated with a range of ecogeographical factors. In particular, the G phenotype of BMY1 was restricted to the Negev Desert and Dead Sea regions of Israel. Over 78% of the variation in the frequency of this particular phenotype could be explained by the number of rainy days per year and mean temperature in January. This suggests that variation at this locus or at loci linked to it may be of adaptive significance and of value in the introgression of genes controlling abiotic stress tolerance from H. spontaneum into the H. vulgare gene pool.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 x 10(exp -21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ring down of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 Sigma. The source lies at a luminosity distance of 410(+160/-180) Mpc corresponding to a redshift z = 0.09(+0.03/-0.04). In the source frame, the initial black hole masses are 36(+5/-4) Mass compared to the sun, and 29(+4/-4) Mass compared to the sun, and the final black hole mass is 62(+4/-4) Mass compared to the sun, with 3.0(+0.5/-0.5)sq c radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.
    Keywords: Numerical Analysis; Astrophysics
    Type: GSFC-E-DAA-TN41240 , Physical Review Letters (ISSN 0031-9007) (e-ISSN 1079-7114); 116; 6; 061102
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...