ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-01-19
    Description: The question of whether the plankton communities in low-nutrient regions of the ocean, comprising 80% of the global ocean surface area, are net producers or consumers of oxygen and fixed carbon is a key uncertainty in the global carbon cycle. Direct measurements in bottle experiments indicate net oxygen consumption in the sunlit zone, whereas geochemical evidence suggests that the upper ocean is a net source of oxygen. One possible resolution to this conflict is that primary production in the gyres is episodic and thus difficult to observe: in this model, oligotrophic regions would be net consumers of oxygen during most of the year, but strong, brief events with high primary production rates might produce enough fixed carbon and dissolved oxygen to yield net production as an average over the annual cycle. Here we examine the balance of oxygen production over three years at sites in the North and South Pacific subtropical gyres using the new technique of oxygen sensors deployed on profiling floats. We find that mixing events during early winter homogenize the upper water column and cause low oxygen concentrations. Oxygen then increases below the mixed layer at a nearly constant rate that is similar to independent measures of net community production. This continuous oxygen increase is consistent with an ecosystem that is a net producer of fixed carbon (net autotrophic) throughout the year, with episodic events not required to sustain positive oxygen production.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Riser, Stephen C -- Johnson, Kenneth S -- England -- Nature. 2008 Jan 17;451(7176):323-5. doi: 10.1038/nature06441.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Oceanography, University of Washington, Seattle, Washington 98195, USA. riser@ocean.washington.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18202655" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon/metabolism ; Carbon Dioxide/metabolism ; Hawaii ; Oxygen/analysis/*metabolism ; Pacific Ocean ; Plankton/metabolism ; Seawater/*chemistry ; Time Factors ; Tropical Climate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-06-26
    Description: Concentrations of dissolved inorganic carbon (DIC) decrease in the surface mixed layers during spring and summer in most of the oligotrophic ocean. Mass balance calculations require that the missing DIC is converted into particulate carbon by photosynthesis. This DIC uptake represents one of the largest components of net community production in the world ocean. However, mixed-layer waters in these regions of the ocean typically contain negligible concentrations of plant nutrients such as nitrate and phosphate. Combined nutrient supply mechanisms including nitrogen fixation, diffusive transport and vertical entrainment are believed to be insufficient to supply the required nutrients for photosynthesis. The basin-scale potential for episodic nutrient transport by eddy events is unresolved. As a result, it is not understood how biologically mediated DIC uptake can be supported in the absence of nutrients. Here we report on high-resolution measurements of nitrate (NO(3)(-)) and oxygen (O(2)) concentration made over 21 months using a profiling float deployed near the Hawaii Ocean Time-series station in the North Pacific subtropical gyre. Our measurements demonstrate that as O(2) was produced and DIC was consumed over two annual cycles, a corresponding seasonal deficit in dissolved NO(3)(-) appeared in water at depths from 100 to 250 m. The deep-water deficit in NO(3)(-) was in near-stoichiometric balance with the fixed nitrogen exported to depth. Thus, when the water column from the surface to 250 m is considered as a whole, there is near equivalence between nutrient supply and demand. Short-lived transport events (〈10 days) that connect deep stocks of nitrate to nutrient-poor surface waters were clearly present in 12 of the 127 vertical profiles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnson, Kenneth S -- Riser, Stephen C -- Karl, David M -- England -- Nature. 2010 Jun 24;465(7301):1062-5. doi: 10.1038/nature09170.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Monterey Bay Aquarium Research Institute, Moss Landing, California 95039, USA. johnson@mbari.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20577212" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/chemistry ; Carbon Dioxide/analysis/metabolism ; Ecosystem ; Hawaii ; Nitrates/*analysis/chemistry/*metabolism ; Nitrogen/analysis/chemistry/metabolism ; Oxygen/analysis/metabolism ; Pacific Ocean ; Salinity ; Seasons ; Seawater/*chemistry ; Ships ; Solubility ; Time Factors ; *Tropical Climate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...