ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 58 (1996), S. 5-18 
    ISSN: 1432-0819
    Keywords: Key words Lava ; Cooling ; Pahoehoe ; Hawai'i
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  In this paper we describe a new thermal model for the initial cooling of pahoehoe lava flows. The accurate modeling of this initial cooling is important for understanding the formation of the distinctive surface textures on pahoehoe lava flows as well as being the first step in modeling such key pahoehoe emplacement processes as lava flow inflation and lava tube formation. This model is constructed from the physical phenomena observed to control the initial cooling of pahoehoe flows and is not an empirical fit to field data. We find that the only significant processes are (a) heat loss by thermal radiation, (b) heat loss by atmospheric convection, (c) heat transport within the flow by conduction with temperature and porosity-dependent thermal properties, and (d) the release of latent heat during crystallization. The numerical model is better able to reproduce field measurements made in Hawai'i between 1989 and 1993 than other published thermal models. By adjusting one parameter at a time, the effect of each of the input parameters on the cooling rate was determined. We show that: (a) the surfaces of porous flows cool more quickly than the surfaces of dense flows, (b) the surface cooling is very sensitive to the efficiency of atmospheric convective cooling, and (c) changes in the glass forming tendency of the lava may have observable petrographic and thermal signatures. These model results provide a quantitative explanation for the recently observed relationship between the surface cooling rate of pahoehoe lobes and the porosity of those lobes (Jones 1992, 1993). The predicted sensitivity of cooling to atmospheric convection suggests a simple field experiment for verification, and the model provides a tool to begin studies of the dynamic crystallization of real lavas. Future versions of the model can also be made applicable to extraterrestrial, submarine, silicic, and pyroclastic flows.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0819
    Keywords: Key words TM ; Lava flow ; Thermal flux ; Effusion rates ; AVHRR ; Pu'u 'O'o ; Kupaianaha
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  We present a thermal model to calculate the total thermal flux for lava flowing in tubes, on the surface, or under shallow water. Once defined, we use the total thermal flux to estimate effusion rates for active flows at Kilauea, Hawaii, on two dates. Input parameters were derived from Landsat Thematic Mapper (TM), field and laboratory measurements. Using these parameters we obtain effusion rates of 1.76±0.57 and 0.78±0.27 m3 s–1 on 23 July and 11 October 1991, respectively. These rates are corroborated by field measurements of 1.36±0.14 and 0.89±0.09 m3 s–1 for the same dates (Kauahikaua et al. 1996). Using weather satellite (AVHRR) data of lower spatial resolution, we obtain similar effusion rates for an additional 26 dates between the two TM-derived measurements. We assume that, although total effusion rates at the source declined over the period, the shut down of the ocean entry meant that effusion rates for the surface flows alone remained stable. Such synergetic use of remotely sensed data provides measurements that can (a) contribute to monitoring flow-field evolution, and (b) provide reliable numerical data for input into rheological and thermal models. We look forward to being able to produce estimates for effusion rates using data from high-spatial-resolution sensors in the earth observing system (EOS) era, such as Landsat 7, the hyperspectral imager, the advanced spaceborne thermal emission spectrometer, and the advanced land imager.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...