ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Marine Policy 34 (2010): 728-732, doi:10.1016/j.marpol.2009.12.001.
    Description: The potential emergence of an ocean mining industry to exploit seafloor massive sulfides could present opportunities for oceanographic science to facilitate seafloor mineral development in ways that lessen environmental harms.
    Description: The authors are grateful for support from the Elisabeth and Henry Morss, Jr. Colloquia Fund, the ChEss (Chemosynthetic Ecosystems) Project of the Census of Marine Life, InterRidge, the Ridge 2000 Program of the National Science Foundation, and the authors’ institutions.
    Keywords: Ocean mining ; Seafloor massive sulfides ; Law of the sea ; Economics ; Environmental assessment
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Toxins and Biologically Active Compounds from Microalgae, Volume 2: Biological Effects and Risk Management, edited by Gian Paolo Rossini, :502-537. CRC Press, 2014. ISBN: 9781482231465.
    Description: Coupled nature-human (CNH) systems are now the focus of a growing number of interdisciplinary re-search programs worldwide (Liu et al. 2007a). As implied by the term “coupled,” these systems involve interactions between nature and humans, often affecting the dynamic characteristics of each component. Natural and social scientists supported by the US National Science Foundation and other research sponsors are engaged in developing a deeper understanding of these dynamics, focusing on the linkages and feedbacks affecting the trajectories of coupled system behavior. Human interactions with natural hazards, such as volcanoes, earthquakes, tsunamis, major storms, floods, droughts, forest fires, tornadoes, soil erosion, mudslides, sink holes, avalanches, lightning strikes, among many others, often involve such couplings. Indeed, economists who specialize in catastrophes have long defined natural hazards as comprising a process of joint production (Russell 1970, Zeckhauser 1996). Without a human presence, a natural hazard cannot impose impacts that can be measured or felt in socio-economic or other terms. In some instances, humans may contribute to the occurrence of a hazard or influence its frequency, scale, intensity, or duration. Even when humans do not cause or exacerbate a hazard, they may suffer its adverse effects, and there may be actions that can be taken to mitigate them. This chapter focuses on a specific type of hazard-human coupling relating to coastal blooms of toxic marine algae, often referred to as harmful algal blooms (HABs). Specifically, we draw examples primari-ly from human interactions with blooms of the toxic dinoflagellate Karenia brevis from the Gulf of Mexico. Humans interact with marine algae in many ways, and the great majority of such interactions are pos-itive and beneficial. Because primary productivity drives oceanic ecosystems from the bottom up, algae provide a critical, but mostly unquantified and often unappreciated, ecosystem service to humans. Even toxic dinoflagellates such as K. brevis may serve a beneficial ecological role in terms of primary productivity and nutrient cycling (Vargo et al. 1987).
    Description: This research was sponsored by the US National Science Foundation under NSF Grant No. 1009106 (CNH).
    Keywords: Coupled nature-human systems ; HAB ; Harmful algal bloom ; CHANS
    Repository Name: Woods Hole Open Access Server
    Type: Book chapter , Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hoagland, P., Kirkpatrick, B., Jin, D., Kirkpatrick, G., Fleming, L. E., Ullmann, S. G., Beet, A., Hitchcock, G., Harrison, K. K., Li, Z. C., Garrison, B., Diaz, R. E., & Lovko, V. Lessening the hazards of Florida red tides: a common sense approach. Frontiers in Marine Science, 7, (2020): 538, doi:10.3389/fmars.2020.00538.
    Description: In the Gulf of Mexico, especially along the southwest Florida coast, blooms of the dinoflagellate Karenia brevis are a coastal natural hazard. The organism produces a potent class of toxins, known as brevetoxins, which are released following cell lysis into ocean or estuarine waters or, upon aerosolization, into the atmosphere. When exposed to sufficient levels of brevetoxins, humans may suffer from respiratory, gastrointestinal, or neurological illnesses. The hazard has been exacerbated by the geometric growth of human populations, including both residents and tourists, along Florida’s southwest coast. Impacts to marine organisms or ecosystems also may occur, such as fish kills or deaths of protected mammals, turtles, or birds. Since the occurrence of a severe Karenia brevis bloom off the southwest Florida coast three-quarters of a century ago, there has been an ongoing debate about the best way for humans to mitigate the impacts of this hazard. Because of the importance of tourism to coastal Florida, there are incentives for businesses and governments alike to obfuscate descriptions of these blooms, leading to the social amplification of risk. We argue that policies to improve the public’s ability to understand the physical attributes of blooms, specifically risk communication policies, are to be preferred over physical, chemical, or biological controls. In particular, we argue that responses to this type of hazard must emphasize maintaining the continuity of programs of scientific research, environmental monitoring, public education, and notification. We propose a common-sense approach to risk communication, comprising a simplification of the public provision of existing sources of information to be made available on a mobile website.
    Description: The research leading to these results was supported by the US National Science Foundation (NSF) under NSF Grant No. CNH 1009106. PH and DJ acknowledge the complementary support under NSF Grant No. PFI/BIC 1534054.
    Keywords: Harmful algal bloom ; Florida red tide ; Karenia brevis ; Economic effect ; Policy response ; Social amplification of risk ; Risk communication
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Patent issues are one way to observe the behavior of private firms and government agencies at a formative stage in an industry's development when, for strategic reasons, these participants are careful about disclosing details of their activities. The seabed mining industry is a good example of an industry in its formative stages. This industry has been characterized in large part by the research and development (R&D) of technology to recover minerals from deep ocean polymetallic nodules and to process them metallurgically into metal products. The nearly 400 seabed mining patents that have been granted worldwide are a rough measure of this R&D activity. Patent issues can reveal several interesting aspects of an industry: (a) the identity of participants; (b) the generic type of technology; (c) the technological concentration of patent holders; (d) the technological integration of patent holders; and (e) the timing of inventive activity. In some cases, industrial motivations and strategies may be inferred from these aspects . Moreover, seabed mining might be subject to the cyclical fluctuations of markets for the metals contained in polymetallic nodules. Patent activity could provide some insight into the nature of a possible seabed mining industry cycle.
    Description: Funding was provided by the U.S. Department of Commerce, NOAA, National Sea Grant College Program under grants Nos. NABOAA-D-0007 (R/ S-7), NA83AA-D-00049 (R/ G-7), and NA84AA-D-00033 (R/ G-7). Research supported by the Marine Policy Center's Johnson Endowment Fund.
    Keywords: Ocean mining ; Patents
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...