ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (5)
  • Geophysics  (1)
Collection
Years
  • 1
    Publication Date: 2004-12-03
    Description: Dynamo is a small Mars orbiter planned to be launched in 2005 or 2007, in the frame of the NASA/CNES Mars exploration program. It is aimed at improving gravity and magnetic field resolution, in order to better understand the magnetic, geologic and thermal history of Mars, and at characterizing current atmospheric escape, which is still poorly constrained. These objectives are achieved by using a low periapsis orbit, similar to the one used by the Mars Global Surveyor spacecraft during its aerobraking phases. The proposed periapsis altitude for Dynamo of 120-130 km, coupled with the global distribution of periapses to be obtained during one Martian year of operation, through about 5000 low passes, will produce a magnetic/gravity field data set with approximately five times the spatial resolution of MGS. Low periapsis provides a unique opportunity to investigate the chemical and dynamical properties of the deep ionosphere, thermosphere, and the interaction between the atmosphere and the solar wind, therefore atmospheric escape, which may have played a crucial role in removing atmosphere, and water, from the planet. There is much room for debate on the importance of current atmosphere escape processes in the evolution of the Martian atmosphere, as early "exotic" processes including hydrodynamic escape and impact erosion are traditionally invoked to explain the apparent sparse inventory of present-day volatiles. Yet, the combination of low surface gravity and the absence of a substantial internally generated magnetic field have undeniable effects on what we observe today. In addition to the current losses in the forms of Jeans and photochemical escape of neutrals, there are solar wind interaction-related erosion mechanisms because the upper atmosphere is directly exposed to the solar wind. The solar wind related loss rates, while now comparable to those of a modest comet, nonetheless occur continuously, with the intriguing possibility of important cumulative and/or enhanced effects over the several billion years of the solar system's life. If the detailed history of the Martian internal field could be traced back, and the current escape processes could be understood well enough to model the expected stronger losses under early Sun conditions, one could go a long way toward constraining this part of the mysterious history of Mars' atmosphere.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Concepts and Approaches for Mars Exploration; Part 1; 61-62; LPI-Contrib-1062
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-08
    Description: We will report on our investigation of the solar wind/Mars boundaries and on their dependence on the near surface magnetic anomalies.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Millennium Conference, Earth and Planetary Sciences; Nice; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: We present a novel method to determine solar wind proxies from sheath measurements at Mars. Specifically, we develop an artificial neural network (ANN) to simultaneously infer seven solar wind proxies: ion density, ion speed, ion temperature, and interplanetary magnetic field magnitude and its vector components, using spacecraft measurements of ion moments, magnetic field magnitude, magnetic field components in the sheath, and the solar extreme ultraviolet flux. The ANN was trained and tested using3 years of data from the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. When compared with MAVEN spacecraft's in situ measured values of the solar wind parameters, we find that the ANN proxies for the solar wind ion density, ion speed, ion temperature, and interplanetary magnetic field magnitude havepercentage differences of 50% or less for 84.4%, 99.9%, 86.8%, and 79.8% of the instances, respectively. Forthe cone angle and clock angle proxies, 69.1% and 53.3% of instances, respectively, have angle differences of 30* or less.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN62945 , Geophysical Research Letters (ISSN 0094-8276) (e-ISSN 1944-8007); 45; 20
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The identification of magnetic reconnection on the dayside of Mars has been elusive owing to the lack of comprehensive plasma and field measurements. Here we present direct measurements of dayside in situ reconnection signatures by the comprehensive particles and fields package on board the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft over strong crustal magnetic fields in the southern hemisphere of Mars. During a crossing of a bifurcated current sheet consisting of northward and southward magnetic fields, MAVEN recorded (i) ionospheric photoelectrons trapped on closed magneticfield lines, (ii) Hall magnetic fields and a nonzero normal field with polarity consistent with a crossing northward of the X line, and (iii) northward Alfvenic ion jets. Dayside magnetic reconnection on crustal magnetic fields could control the global configuration and topology of the Martian magnetosphere and alter the ion escape pattern from the dayside ionosphere.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN60521 , Geophysical Research Letters (ISSN 0094-8276) (e-ISSN 1944-8007); 45; 10; 4550-4558
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: We perform a survey of 1-Hz waves at Mars utilizing Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft observations for a Martian year. We find that the 1-Hz wave occurrence rate shows an apparent variation caused by masking of the waves by background turbulence during the times when the background turbulence levels are high. To correct for this turbulence masking, we select waves that occur in time intervals where the background turbulence levels are low. We find that the extreme ultraviolet flux does not affect the wave occurrence rate significantly, suggesting that the newly born pickup ions originating in the Mars's exosphere contribute minimally to the 1-Hz wave generation. We find that the wave occurrence rates are higher for low Mach numbers and low beta values than for high Mach numbers and high beta values. Further, we find that a high percentage of 1-Hz waves satisfy the group-standing condition, which suggests that a high percentage of the waves seen as monochromatic waves in the spacecraft frame can be broadband waves in the solar wind frame that have group velocities nearly equal and opposite to the solar wind velocity. We infer that the wave occurrence rate trends with the Mach number and proton beta are a consequence of how the Mach numbers and beta values influence the wave generation and damping or how those parameters affect the group-standing condition. Finally, we find that the 1-Hz waves are equally likely to be found in both the quasi-parallel and the quasi-perpendicular foreshock regions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN60517 , Journal of Geophysical Research: Space Physics (ISSN 2169-9402) (e-ISSN 2169-9380); 123; 5; 3460-3476
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: We present preliminary results and interpretations for Mars Atmospheric and Volatile EvolutioN,(MAVEN) observations of magnetosheath-ionospheric boundary oscillations at Mars. Using centrifugal force arguments, we first predict that a signature of fully rolled up Kelvin-Helmholtz vortices at Mars is sheath ions that have a bulk motion toward the Sun. The sheath ions adjacent to a vortex should also accelerate to speeds higher than the mean sheath velocity. We also predict that while the ionospheric ions that are in the vortex accelerate antisunward, they never attain speeds exceeding that of the sheath ions, in stark contrast to KH vortices that arise at the Earths magnetopause. We observe accelerated sheath and ionospheric ions, but we do not observe sheath ions that have a bulk motion toward the Sun. Thus, we interpret these observations as KH vortices that have not fully rolled up.
    Keywords: Geophysics
    Type: GSFC-E-DAA-TN40184 , Geophysical Research Letters (ISSN 0094-8276); 43; 10; 4763-4773
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...