ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1939
    Keywords: Arctic/alpine soils ; Benomyl ; Microbial C, N, P ; Nutrient immobilization ; Plant nutrient uptake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The soil microbial carbon (C), nitrogen (N) and phosphorus (P) pools were quantified in the organic horizon of soils from an arctic/alpine low-altitude heath and a high-altitude fellfield by the fumigation-extraction method before and after factorial addition of sugar, NPK fertilizer and benomyl, a fungicide. In unamended soil, microbial C, N and P made up 3.3–3.6%, 6.1–7.3% and 34.7% of the total soil C, N and P content, respectively. The inorganic extractable N pool was below 0.1% and the inorganic extractable P content slightly less than 1% of the total soil pool sizes. Benomyl addition in spring and summer did not affect microbial C or nutrient content analysed in the autumn. Sugar amendments increased microbial C by 15 and 37% in the two soils, respectively, but did not affect the microbial nutrient content, whereas inorganic N and P either declined significantly or tended to decline. The increased microbial C indicates that the microbial biomass also increased but without a proportional enhancement of N and P uptake. NPK addition did not affect the amount of microbial C but almost doubled the microbial N pool and more than doubled the P pool. A separate study has shown that CO2 evolution increased by more than 50% after sugar amendment and by about 30% after NPK and NK additions to one of the soils. Hence, the microbial biomass did not increase in response to NPK addition, but the microbes immobilized large amounts of the added nutrients and, judging by the increased CO2 evolution, their activity increased. We conclude: (1) that microbial biomass production in these soils is stimulated by labile carbon and that the microbial activity is stimulated by both labile C and by nutrients (N); (2) that the microbial biomass is a strong sink for nutrients and that the microbial community probably can withdraw substantial amounts of nutrients from the inorganic, plant-available pool, at least periodically; (3) that temporary declines in microbial populations are likely to release a flush of inorganic nutrients to the soil, particularly P of which the microbial biomass contained more than one third of the total soil pool; and (4) that the mobilization-immobilization cycles of nutrients coupled to the population dynamics of soil organisms can be a significant regulating factor for the nutrient supply to the primary producers, which are usually strongly nutrient-limited in arctic ecosystems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 112 (1997), S. 305-313 
    ISSN: 1432-1939
    Keywords: Key words Nutrient limitation ; Microbial immobilization ; Festuca vivipara ; Soil labile carbon ; Allelopathy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Biomass production was analysed in Festuca vivipara, grown for 3 months in pots with non-sterilized or sterilized soil after factorial addition of three levels of labile carbon combined with high and low levels of N and P. The soil was a nutrient-poor subarctic heath soil. In the non-sterilized soil plant biomass production increased strongly only in the treatment with high levels of both N and P, which suggests that both nutrients limited plant growth. In the sterilized soil addition of a high level of N without P addition gave almost the same growth response as in the combined NP treatment. This was because of a more than 30-fold increase of inorganic phosphorus in the soil as P was released from the killed microbial biomass after sterilization. Sugar addition reduced plant growth in all treatments. The reduction in plant growth was dose dependent within the range of 0–450 μg C g−1 soil added to the non-sterilized soil, but the response levelled off at 233 μg C g−1 soil in the soil that had been sterilized at the start of the experiment. The plant response, together with observed depletion of soil inorganic N and P, indicated that the microbial biomass immobilized nutrients efficiently and reduced plant growth when extra labile carbon was added. The inhibition of growth was lower, however, in the soil which had been sterilized, probably because of a slow recovery of the microbial populations in it. Two of the nutrient-carbon solutions closely matched the N, P and C concentrations in a solution containing leaf extracts of Cassiope tetragona and Betula tortuosa that had been used previously to test for possible allelopathic effects of compounds in the leaf extracts. These extracts also reduced plant growth. The growth reduction was equally large or larger after nutrient-sugar addition than after addition of leaf extracts in three out of the four possible combinations of species and sterilized or non-sterilized soil. In the fourth case (Betula extract added to sterilized soil), the effect was larger when leaf extract was added than after addition of the nutrient-carbon solution. This could be due to a low rate of microbial degradation of phytotoxic substances in this soil because of a slow recovery of the microbial populations after sterilization. The generally stronger or equal effect of the nutrient-sugar addition compared to the leaf extract addition leads to the conclusion that microbial nutrient immobilization and microbial competition for nutrients increased as a function of labile carbon addition with the extract. Hence, it appears that enhanced microbial activity and microbial nutrient immobilization rather than phytotoxic effects was the primary reasons for the reduced biomass production in F. vivipara even after addition of the leaf extracts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...