ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-11-25
    Description: The equilibrium composition of volcanic gaseswith their magma is often overprinted by interaction with ashallow hydrothermal system. Identifying the magmatic sig-nature of volcanic gases is critical to relate their composi-tion to properties of the magma (temperature,fO2, gas-meltsegregation depth). We report measurements of the chemi-cal composition and flux of the major gas species emittedfrom Turrialba Volcano during March 2013. Measurementswere made of two vents in the summit region, one of whichopened in 2010 and the other in 2012. We determined an av-erage SO2flux of 5.2±1.9 kg s−1using scanning ultravio-let spectroscopy, and molar proportions of H2O, CO2, SO2,HCl, CO and H2gases of 94.16, 4.03, 1.56, 0.23, 0.003 and0.009 % respectively by open-path Fourier transform infrared(FTIR) spectrometry and a multi-species gas-sensing system.Together, these data imply fluxes of 88, 8, 0.44, 5×10−3and1×10−3kg s−1for H2O, CO2, HCl, CO and H2respectively.Although H2S was detected, its concentration could not beresolved. HF was not detected. The chemical signature of thegas from both vents was found to be broadly similar. Follow-ing the opening of the 2010 and 2012 vents we found limitedto negligible interaction of the magmatic gas with the hy-drothermal system has occurred and the gas composition ofthe volcanic plume is broadly representative of equilibriumwith the magma. The time evolution of the gas composition,the continuous emission of large quantities of SO2, and thephysical evolution of the summit area with new vent open-ings and more frequent eruptions all point towards a continu-ous drying of the hydrothermal system at Turrialba’s summitat an apparently increasing rate.
    Description: This research was supported by the RoyalGeographical Society (with IBG) with a Geographical FieldworkGrant. Y. Moussallam and N. Peters were additionally supportedby the Philip Lake funds from the Department of Geography,University of Cambridge. Y. Moussallam acknowledges a researchgrant from Mazamas and support through ERC project #279790.We thank the NERC Field Spectroscopy Facility for the loanof their infrared spectrometer. A. Aiuppa acknowledges supportthrough ERC grant no. 305377 (BRIDGE)
    Description: Published
    Description: 1341–1350
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: volcanic degassing ; Multi-GAS ; UV spectroscopy ; FTIR ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-25
    Description: Over the past few decades, substantial progress has been made to overcome the technical difficulties of continuously measuring volcanic SO2 emissions. However, measurements of CO2 emissions still present many difficulties, partly due to the lack of instruments that can directly measure CO2 emissions and partly due to its strong atmospheric background. In order to overcome these difficulties, a commonly taken approach is to combine differential optical absorption spectroscopy (DOAS) by using NOVAC scan-DOAS instruments for continuous measurements of crateric SO2 emissions, and electrochemical/NDIR multi-component gas analyser system (multi-GAS) instruments for measuring CO2/SO2 ratios of excerpts of the volcanic plume. This study aims to quantify the representativeness of excerpts of CO2/SO2 ratios measured by Multi-GAS as a fraction of the whole plume composition, by comparison with simultaneously measured CO2/SO2 ratios using cross-crater Fourier transform infrared spectroscopy (FTIR). Two study cases are presented: Telica volcano (Nicaragua), with a homogenous plume, quiescent degassing from a deep source and ambient temperature, and Turrialba volcano (Costa Rica), which has a non-homogeneous plume from three main sources with different compositions and temperatures. Our comparison shows that in our “easier case” (Telica), FTIR and Multi-GAS CO2/SO2 ratios agree within a factor about 3 %. In our “complicated case” (Turrialba), Multi-GAS and FTIR yield CO2/SO2 ratios differing by approximately 13–25 % at most. These results suggest that a fair estimation of volcanic CO2 emissions can be provided by the combination of DOAS and Multi-GAS instruments for volcanoes with similar degassing conditions as Telica or Turrialba. Based on the results of this comparison, we report that by the time our measurements were made, Telica and Turrialba were emitting approximately 100 and 1,000 t day−1 of CO2, respectively.
    Description: This work was supported by the Swedish International Development Agency (SIDA), and the DECADE initiative in coordination with OVSICORI-UNA and INETER. The research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007/2013)/ERC grant agreement n1305377 (PI Aiuppa)
    Description: Published
    Description: 2335–2347
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: volcanic degassing ; Multi-GAS ; UV spectroscopy ; FTIR
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-03-01
    Description: Understanding the trigger mechanisms of phreatic eruptions is key to mitigating the effects of these hazardous but poorly forecastable volcanic events. It has recently been established that high-rate volcanic gas observations are potentially very suitable to identifying the source processes driving phreatic eruptions, and to eventually detecting precursory changes prior to individual phreatic blasts. In February-May 2017, we deployed a Multi-GAS instrument to continuously monitor gas concentrations in the crater lake plume of Rincón de la Vieja, a remote and poorly monitored active volcano in Costa Rica, site of frequent phreatic/phreatomagmatic eruptions. Forty-two phreatic/phreatomagmatic eruptions were seismically recorded during our investigated period, 9 of which were also recorded for gas by the Multi-GAS. To the best of our knowledge, these represent the first instrumentally measured gas compositions during individual phreatic/phreatomagmatic explosions at an active volcano. Our results show that during background quiescent degassing the Rincón de la Vieja crater lake plume was characterized by high CO2/SO2 ratios of 64 ± 59 and H2S/SO2 ratios of 0.57 ± 0.20. This composition is interpreted as reflecting hydrothermal (re)processing of magma-sourced gas in the sub-limnic environment. Phreatic blasts were recorded by the Multi-GAS as brief (1–2 min long) pulses of elevated gas mixing ratios (up to ~52 ppmv SO2 and 〉3,000 ppmv CO2), or more than an order of magnitude higher than during background degassing (~1 ppmv SO2 and ~450 ppmv CO2). During the phreatic eruption(s), the H2S/SO2 ratio was systematically lower (〈0.18) than during background degassing, but the CO2/SO2 ratio remained high (and variable), ranging from 37 to 390. These S-poor compositions for the eruptive gas imply extensive processing of the source magmatic gas during pre-eruptive hydrothermal storage, likely by deposition of native S and/or sulfate. Our gas results are thus overall consistent with a mechanism of phreatic eruptions triggered by accumulation of magmatic-hydrothermal gases beneath a hydrothermal seal. We claim that real-time Multi-GAS monitoring is urgently needed at other crater lake-hosting volcanoes (e.g., Ruapehu, Aso), where phreatic eruptions may similarly be preceded by phases of reduced S degassing at the surface.
    Description: Published
    Description: Article 247
    Description: 4V. Dinamica dei processi pre-eruttivi
    Description: JCR Journal
    Keywords: volcanic gases ; crater lakes ; rincon de la vieja ; multi-GAS ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-06-08
    Description: New eruptive activity at volcanoes that have been long quiescent poses a significant challenge to hazard assessment, as it requires assessment of how the situation may develop. Such incipient activity is often poorly characterised as most quiescent volcanoes are poorly monitored, especially with respect to gas geochemistry. Here, we report gas composition and flux measurements from a new vent at the onset of eruptive activity at the Nevados de Chillán volcanic complex (Chile) in January-February 2016. The molar proportions of H2O, CO2, SO2, H2S and H2 gases are found to be 98.4, 0.97, 0.11, 0.01 and 0.5 mol % respectively. The mean SO2 flux recorded in early February 2016 during periods of eruptive discharge amounts to 0.4–0.6 kg s􀀀1. We show that magmatic gases were involved in this activity, associated with a sequence of eruptions. Tephra ejected by the first blast of 8 January are dominated by lithic fragments of dacitic composition. By contrast the tephra ejected from a subsequent eruption contains both lithic fragments of dense dacite, and a fresher, sparsely vesicular material of basaltic andesite composition. By October 2017, the ejected tephra was again dominated by dense dacitic lithic material. Together with seismic and ground deformation evidence, these observations suggest that a small intrusion of basaltic to andesitic magma at shallow level led to the explosive activity. Our serendipitous survey, right at the onset of eruptive activity, provides a valuable window into the processes of reawakening of a dormant volcano.
    Description: Published
    Description: 19-32
    Description: 4V. Processi pre-eruttivi
    Description: N/A or not JCR
    Keywords: volcanic gases ; volcanic unrest ; trail by fire ; multi-GAS ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...