ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-11-25
    Description: The equilibrium composition of volcanic gaseswith their magma is often overprinted by interaction with ashallow hydrothermal system. Identifying the magmatic sig-nature of volcanic gases is critical to relate their composi-tion to properties of the magma (temperature,fO2, gas-meltsegregation depth). We report measurements of the chemi-cal composition and flux of the major gas species emittedfrom Turrialba Volcano during March 2013. Measurementswere made of two vents in the summit region, one of whichopened in 2010 and the other in 2012. We determined an av-erage SO2flux of 5.2±1.9 kg s−1using scanning ultravio-let spectroscopy, and molar proportions of H2O, CO2, SO2,HCl, CO and H2gases of 94.16, 4.03, 1.56, 0.23, 0.003 and0.009 % respectively by open-path Fourier transform infrared(FTIR) spectrometry and a multi-species gas-sensing system.Together, these data imply fluxes of 88, 8, 0.44, 5×10−3and1×10−3kg s−1for H2O, CO2, HCl, CO and H2respectively.Although H2S was detected, its concentration could not beresolved. HF was not detected. The chemical signature of thegas from both vents was found to be broadly similar. Follow-ing the opening of the 2010 and 2012 vents we found limitedto negligible interaction of the magmatic gas with the hy-drothermal system has occurred and the gas composition ofthe volcanic plume is broadly representative of equilibriumwith the magma. The time evolution of the gas composition,the continuous emission of large quantities of SO2, and thephysical evolution of the summit area with new vent open-ings and more frequent eruptions all point towards a continu-ous drying of the hydrothermal system at Turrialba’s summitat an apparently increasing rate.
    Description: This research was supported by the RoyalGeographical Society (with IBG) with a Geographical FieldworkGrant. Y. Moussallam and N. Peters were additionally supportedby the Philip Lake funds from the Department of Geography,University of Cambridge. Y. Moussallam acknowledges a researchgrant from Mazamas and support through ERC project #279790.We thank the NERC Field Spectroscopy Facility for the loanof their infrared spectrometer. A. Aiuppa acknowledges supportthrough ERC grant no. 305377 (BRIDGE)
    Description: Published
    Description: 1341–1350
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: volcanic degassing ; Multi-GAS ; UV spectroscopy ; FTIR ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-17
    Description: Volcanic gas emissions are intimately linked to the dynamics of magma ascent and outgassing and, on geological time scales, constitute an important source of volatiles to the Earth's atmosphere. Measurements of gas composition and flux are therefore critical to both volcano monitoring and to determining the contribution of volcanoes to global geochemical cycles. However, significant gaps remain in our global inventories of volcanic emissions, (particularly for CO2, which requires proximal sampling of a concentrated plume) for those volcanoes where the near‐vent region is hazardous or inaccessible. Unmanned Aerial Systems (UAS) provide a robust and effective solution to proximal sampling of dense volcanic plumes in extreme volcanic environments. Here we present gas compositional data acquired using a gas sensor payload aboard a UAS flown at Volcán Villarrica, Chile. We compare UAS‐derived gas time series to simultaneous crater rim multi‐GAS data and UV camera imagery to investigate early plume evolution. SO2 concentrations measured in the young proximal plume exhibit periodic variations that are well correlated with the concentrations of other species. By combining molar gas ratios (CO2/SO2 = 1.48–1.68, H2O/SO2 = 67–75, and H2O/CO2 = 45–51) with the SO2 flux (142 ± 17 t/day) from UV camera images, we derive CO2 and H2O fluxes of ~150 t/day and ~2,850 t/day, respectively. We observe good agreement between time‐averaged molar gas ratios obtained from simultaneous UAS‐ and ground‐based multi‐GAS acquisitions. However, the UAS measurements made in the young, less diluted plume reveal additional short‐term periodic structure that reflects active degassing through discrete, audible gas exhalations.
    Description: Published
    Description: 730-750
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: UAS ; volcanic plume ; villarrica ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-07
    Description: Volcanic emissions are a critical pathway in Earth's carbon cycle. Here, we show that aerial measurements of volcanic gases using unoccupied aerial systems (UAS) transform our ability to measure and monitor plumes remotely and to constrain global volatile fluxes from volcanoes. Combining multi-scale measurements from ground-based remote sensing, long-range aerial sampling, and satellites, we present comprehensive gas fluxes-3760 ± [600, 310] tons day-1 CO2 and 5150 ± [730, 340] tons day-1 SO2-for a strong yet previously uncharacterized volcanic emitter: Manam, Papua New Guinea. The CO2/ST ratio of 1.07 ± 0.06 suggests a modest slab sediment contribution to the sub-arc mantle. We find that aerial strategies reduce uncertainties associated with ground-based remote sensing of SO2 flux and enable near-real-time measurements of plume chemistry and carbon isotope composition. Our data emphasize the need to account for time averaging of temporal variability in volcanic gas emissions in global flux estimates.
    Description: This research was enabled through the Alfred P. Sloan Foundation's support of the Deep Carbon Observatory Deep Earth Carbon Degassing program (DECADE). Part funding also came from the EPSRC CASCADE programme grant (EP/R009953/1). EJL was supported by a Leverhulme Trust Early Career Fellowship. KW was supported by the National Center for Nuclear Robotics (NCNR) EPSRC grant (EP/R02572X/1).
    Description: Published
    Description: eabb9103
    Description: 7TM.Sviluppo e Trasferimento Tecnologico
    Description: JCR Journal
    Keywords: UAS ; volcanic plume ; carbon cycle ; 04.08. Volcanology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-11-25
    Description: Over the past few decades, substantial progress has been made to overcome the technical difficulties of continuously measuring volcanic SO2 emissions. However, measurements of CO2 emissions still present many difficulties, partly due to the lack of instruments that can directly measure CO2 emissions and partly due to its strong atmospheric background. In order to overcome these difficulties, a commonly taken approach is to combine differential optical absorption spectroscopy (DOAS) by using NOVAC scan-DOAS instruments for continuous measurements of crateric SO2 emissions, and electrochemical/NDIR multi-component gas analyser system (multi-GAS) instruments for measuring CO2/SO2 ratios of excerpts of the volcanic plume. This study aims to quantify the representativeness of excerpts of CO2/SO2 ratios measured by Multi-GAS as a fraction of the whole plume composition, by comparison with simultaneously measured CO2/SO2 ratios using cross-crater Fourier transform infrared spectroscopy (FTIR). Two study cases are presented: Telica volcano (Nicaragua), with a homogenous plume, quiescent degassing from a deep source and ambient temperature, and Turrialba volcano (Costa Rica), which has a non-homogeneous plume from three main sources with different compositions and temperatures. Our comparison shows that in our “easier case” (Telica), FTIR and Multi-GAS CO2/SO2 ratios agree within a factor about 3 %. In our “complicated case” (Turrialba), Multi-GAS and FTIR yield CO2/SO2 ratios differing by approximately 13–25 % at most. These results suggest that a fair estimation of volcanic CO2 emissions can be provided by the combination of DOAS and Multi-GAS instruments for volcanoes with similar degassing conditions as Telica or Turrialba. Based on the results of this comparison, we report that by the time our measurements were made, Telica and Turrialba were emitting approximately 100 and 1,000 t day−1 of CO2, respectively.
    Description: This work was supported by the Swedish International Development Agency (SIDA), and the DECADE initiative in coordination with OVSICORI-UNA and INETER. The research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007/2013)/ERC grant agreement n1305377 (PI Aiuppa)
    Description: Published
    Description: 2335–2347
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: volcanic degassing ; Multi-GAS ; UV spectroscopy ; FTIR
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-08
    Description: Bagana is a remote, highly active volcano, located on Bougainville Island in southeastern Papua New Guinea. The volcano has exhibited sustained and prodigious sulfur dioxide gas emissions in recent decades, accompanied by frequent episodes of lava extrusion. The remote location of Bagana and its persistent activity have made it a valuable case study for satellite observations of active volcanism. This remoteness has also left many features of Bagana relatively unexplored. Here, we present the first measurements of volcanic gas composition, achieved by unoccupied aerial system (UAS) flights through the volcano's summit plume, and a payload comprising a miniaturized MultiGAS. We combine our measurements of the molar CO2/SO2 ratio in the plume with coincident remote sensing measurements (ground- and satellite-based) of SO2 emission rate to compute the first estimate of CO2 flux at Bagana. We report low SO2 and CO2 fluxes at Bagana from our fieldwork in September 2019, ∼320 ± 76 td −1 and ∼320 ± 84 td −1, respectively, which we attribute to the volcano's low level of activity at the time of our visit. We use satellite observations to demonstrate that Bagana's activity and emissions behavior are highly variable and advance the argument that such variability is likely an inherent feature of many volcanoes worldwide and yet is inadequately captured by our extant volcanic gas inventories, which are often biased to sporadic measurements. We argue that there is great value in the use of UAS combined with MultiGAS-type instruments for remote monitoring of gas emissions from other inaccessible volcanoes.
    Description: BMK, EJL, and AA acknowledge the financial support of the Alfred P Sloan foundation, awarded via the Deep Carbon Observatory. TR acknowledges funding via the CASCADE programme, EPSRC Programme Grant EP/R009953/1. CIS acknowledges the financial support of the New Zealand Earthquake Commission.
    Description: Published
    Description: e2022GC010786
    Description: OSV1: Verso la previsione dei fenomeni vulcanici pericolosi
    Description: JCR Journal
    Keywords: Volcanic gas ; UAS ; Bagana Volcano ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...