ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Bradyrhizobium ; Electron microscopy ; Mutants ; Nitrogen fixation ; Nodulation ; Soybean ; Symbiosis ; Transposon Tn5
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The genome of the slow-growing Bradyrhizobium japonicum (strain 110) was mutagenized with transposon Tn5. A total of 1623 kanamycin/streptomycin resistant derivatives were screened in soybean infection tests for nodulation (Nod) and symbiotic nitrogen fixation (Fix). In this report we describe 14 strains possessing a stable, reproducible Nod+Fix- phenotype. These strains were also grown under microaerobic culture conditions to test them for free-living nitrogen fixation activity (Nif). In addition to strains having reduced Fix and Nif activities, there were also strains that had reduced symbiotic Fix activity but were Nif+ ex planta. Analysis of the genomic structure revealed that the majority of the strains had a single Tn5 insertion without any further apparent physical alteration. A few strains had additional insertions (by Tn5 or IS50), or a deletion, or had cointegrated part of the vector used for Tn5 mutagenesis. One of the insertions was found in a known nif gene (nifD) whereas all other mutations seem to affect different, hitherto unknown genes or operons. Several mutant strains had an altered nodulation phenotype, inducing numerous, small, widely distributed nodules. Light and electron microscopy revealed that most of these mutants were defective in different stages of bacteroid development and/or bacteroid persistence. The protein patterns of the mutants were inspected by two-dimensional gel electrophoresis after labelling microaerobic cultures with l-(35S)methionine. Of particular interest were mutants lacking a group of proteins the synthesis of which was known to be under oxygen control. Such strains can be regarded as potential regulatory mutants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Glutamine synthetase ; Leghaemoglobin ; Nitrogenase ; Nitrogen fixation ; Phaseolus ; Rhizobium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The activities of glutamine synthetase (GS), nitrogenase and leghaemoglobin were measured during nodule development in Phaseolus vulgaris infected with wild-type or two non-fixing (Fix-) mutants of Rhizobium phaseoli. The large increase in GS activity which was observed during nodulation with the wild-type rhizobial strain occurred concomitantly with the detection and increase in activity of nitrogenase and the amount of leghaemoglobin. Moreover, this increase in GS was found to be due entirely to the appearance of a novel form of the enzyme (GSn1) in the nodule. The activity of the form (GSn2) similar to the root enzyme (GSr) remained constant throughout the experiment. In nodules produced by infection with the two mutant strains of Rhizobium phaseoli (JL15 and JL19) only trace amounts of GSn1 and leghaemoglobin were detected.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1617-4623
    Keywords: Gene regulation ; Melanin synthesis ; Nitrogen fixation ; Phaseolus beans ; Rhizobium phaseoli
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The symbiotic plasmid pRP2JI of Rhizobium phaseoli strain 8002 was shown to contain two separate regions of DNA which are required and sufficient for the synthesis of the pigment melanin. One of these regions containing the class II mel gene(s) was located to other genes involved in nodulation and in nitrogen fixation. Mutations in this region abolished both the ability to synthesize melanin and to fix nitrogen in Phaseolus bean root nodules. Mutations in the other, unlinked region, containing class I mel gene(s), also abolished melanin synthesis but did not affect symbiotic nitrogen fixation. Transcriptional fusions between the class I mel gene and the Escherichia coli lacZ gene were constructed and it was demonstrated that the class II mel gene(s) activated their transcription in free-living culture. Further, strains containing the cloned regulatory class II gene(s) synthesized melanin when growing in minimal medium, in contrast to wild-type strains which became pigmented only in complete medium containing yeast extract and tryptone. It was shown by hybridization experiments that the regulatory mel gene was closely linked to or may correspond to the regulatory nifA gene; a fragment of R. phaseoli DNA which included the class II gene(s) of R. phaseoli hybridized to a previously identified nifA-like gene of R. leguminosarum, the species that nodulates peas.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...