ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-06-24
    Description: The possibility of constraining the composition and evolution of specific portions of the Sub-Continental Lithospheric Mantle (SCLM) by means of an integrated study of petrography, mineral chemistry, and concentrations of volatiles in fluid inclusions (FI) is a novel approach that can provide clues on the recycling of volatiles within the lithosphere. This approach is even more important in active or dormant volcanic areas, where the signature of the gaseous emissions at the surface can be that of the underlying lithospheric mantle domains. In this respect, the ultramafic xenoliths brought to the surface in West Eifel (~0.5–0.01 Ma) and Siebengebirge (~30–6 Ma) volcanic fields (Germany) are ideal targets, as they provide direct information on one of the most intriguing portions of SCLM beneath the Central European Volcanic Province (CEVP). Five distinct populations from these localities were investigated using petrographic observations, mineral phase analyses and determination of He, Ne, Ar and CO2 contents in olivine-, orthopyroxene-, and clinopyroxene-hosted FI. The most refractory Siebengebirge rocks have highly forsteritic olivine, high-Mg#, low-Al pyroxene, and spinel with high Cr#, reflecting high extents (up to 30%) of melt extraction. In contrast, xenoliths from West Eifel are modally and compositionally heterogeneous, as indicated by the large forsterite range of olivine (Fo83–92), the Cr# range of spinel (0.1–0.6), and the variable Al and Ti contents of pyroxene. Equilibration temperatures vary from 870 ◦C to 1070 ◦C in Siebengebirge, and from ⁓900 ◦C to ⁓1190 ◦C in West Eifel xenoliths, at oxygen fugacity values generally between 􀀀 0.5 and + 1.3 ΔlogƒO2 [FMQ]. In both areas, the FI composition was dominated by CO2, with clinopyroxene, and most of the orthopyroxene had the highest concentrations of volatiles, while olivine was gas-poor. The noble gas and CO2 distributions suggest that olivine is representative of a residual mantle that experienced one or more melt extraction episodes. The 3He/4He ratio corrected for air contamination (Rc/Ra values) varied from 6.8 Ra in harzburgitic lithotypes to 5.5 Ra in lherzolites and cumulate rocks, indicating that the original MORB-like mantle signature was progressively modified by interaction with crustal-related components and melts having 3He/4He and 4He/40Ar* values consistent with those published for magmatic gaseous emissions. The Ne and Ar isotope systematics indicated that most of the data were consistent with mixing between a recycled atmospheric component and a MORB-like mantle, which does not necessarily require the involvement of a lower mantle plume beneath this portion of the CEVP. The major element distribution in mineral phases from West Eifel and Siebengebirge, together with the systematic variations in FI composition, the positive correlation between Al enrichment in pyroxene and equilibration temperatures, and the concomitant Rc/Ra decrease with increasing temperature, suggest that the SCLM beneath Siebengebirge represented the Variscan lithosphere in CEVP prior to the massive infiltration of melts/fluids belonging to the Quaternary Eifel volcanism. In contrast, West Eifel xenoliths reflect multiple heterogeneous metasomatism/refertilisation events that took place in the regional SCLM between ~6 and ~ 0.5 Ma.
    Description: Published
    Description: 120400
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Eifel ; Siebengebirge ; Noble gas and CO2 measurements ; Fluid inclusions ; Mantle xenoliths ; European SCLM ; Partial melting ; Metasomatism ; Refertilisation ; 04.01. Earth Interior ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-12
    Description: Petrology and fluid inclusions (FI) geochemistry are increasingly used in tandem to constrain the compositional features and evolution of the lithospheric mantle. In this study, we combine petrography and mineral chemistry with analyses of noble gases (He, Ne and Ar) and CO2 in olivine, orthopyroxene- and clinopyroxene-hosted FI, as well as radiogenic isotope (Sr-Nd-Pb) systematics of ultramafic xenoliths collected at La Grille volcano in Grande Comore Island, aiming at better characterizing one of the most enigmatic and controversial portions of the western Indian Ocean lithospheric mantle. Xenoliths have been divided in three groups on the basis of their textural features: Group 1 (Opx-bearing), Group 2 (Opx-free) and Group 3 (Cumulate). Overall, petrographic observations and mineral phase compositions indicate that the sampled lithospheric portion experienced variable degrees of melting (from 5% to 35%), recorded by Group 1 most refractory harzburgites and lherzolites, as well as modal metasomatic processes as evidenced by the crystallization of cpx at the expense of opx in Group 1 fertile lherzolites and wehrlite and by Group 2 xenoliths. Crystallization of slightly oversaturated basic silicate melts seems also to have occurred, as shown by Group 3 xenoliths. A positive trend between temperature and ƒO2 is evident, with Group 2 and 3 xenoliths testifying for hotter and more oxidised conditions than Group 1. The variability of the 4He/40Ar* ratio (0.02–0.39) in Group 1, significantly below typical values of a fertile mantle (4He/40Ar* = 1–5), can be explained by the variable degrees of partial melting coupled to metasomatic enrichment that may account for modifying 4He/40Ar*, as also indicated by the mineral composition. He-Ar-CO2 relationships support the presence of a metasomatic CO2-rich process post-dating the melt extraction and the cumulate formation. The air-corrected 3He/4He isotopic ratios (6.30 to 7.36 Ra) are intermediate between the MORB mantle signature (8 ± 1Ra) and the SCLM (6.1 ± 0.9 Ra). The Ne and Ar isotopic signatures (20Ne/22Ne, 21/Ne/22Ne and 40Ar/36Ar) are consistent with mixing between an air-derived component and a MORB-like mantle, supporting the hypothesis for a lithospheric origin of the Comoros magmas, and arguing against any deep mantle plume-related contribution. This is also corroborated by combining Ne with He isotopes, showing that La Grille ultramafic xenoliths are far from the typical plume-type compositions. Sr-Nd-Pb isotope systematics in opx and cpx from La Grille additionally support a MORB-type signature for the lithospheric mantle beneath the area.
    Description: Published
    Description: 107406
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: Mantle xenoliths ; Noble gases ; Fluid inclusions ; Radiogenic isotopes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...