ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ecosystem carbon exchange  (1)
  • 1
    ISSN: 1432-1939
    Keywords: Arctic tundra ; Depth of thaw ; Ecosystem carbon exchange ; Permafrost ; Soil respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Carbon dioxide efflux and soil microenvironmental factors were measured diurnally in Carex aquatilus-and Eriophorum angustifolium-dominated riparian tundra communities to determine the relative importance of soil environmental factors controlling ecosystem carbon dioxide exchange with the atmosphere. Measurements were made weekly between 18 June and 24 July 1990. Diurnal patterns in carbon dioxide efflux were best explained by changes in soil temperature, while seasonal changes in efflux were correlated with changes in depth to water table, depth to frozen soil and soil moisture. Carbon dioxide efflux rates were lowest early in the growing season when high water tables and low soil temperatures limited microbial and root activity. Individual rainfall events that raised the water table were found to strongly reduce carbon dioxide efflux. As the growing season progressed, rainfall was low and depth to water table and soil temperatures increased. In response, carbon dioxide efflux increased strongly, attaining rates late in the season of approximately 10 g CO2 m−2 day−1. These rates are as high as maxima recorded for other arctic sites. A mathematical model is developed which demonstrates that soil temperature and depth to water table may be used as efficient predictors of ecosystem CO2 efflux in this habitat. In parallel with the field measurements of CO2 efflux, microbial respiration was studied in the laboratory as a function of temperature and water content. Estimates of microbial respiration per square meter under field conditions were made by adjusting for potential respiring soil volume as water table changed and using measured soil temperatures. The results indicate that the effect of these factors on microbial respiration may explain a large part of the diurnal and seasonal variation observed in CO2 efflux. As in coastal tundra sites, environmental changes that alter water table depth in riparian tundra communities will have large effects on ecosystem CO2 efflux and carbon balance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...