ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: One application of global models is to predict the response of stratospheric ozone to changes in composition and climate. The recent international ozone assessment included results from three-dimensional models with interactions among the dynamical, photochemical and radiative processes that all influence ozone behavior. The physical basis of such models is far more realistic than that of either the one-dimensional (single profile) models of the 1970's and early 1980's or the two-dimensional (latitude height) models of the late 1980's and 1990's. Observations have played a key role in the model development at all stages. This talk will highlight the role of observations in inspiring broad model improvements that have grown from the effort to reproduce observed relationships or processes, for example the correlations between long-lived constituents seen in aircraft data and the deep unmixed descent of mesospheric air into the winter polar vortices seen from satellite. The talk will also trace the evolution of model evaluation from contour plots showing 'good agreement' to the more rigorous process-oriented evaluation of three-dimensional models that is becoming the norm using the wealth of space-based observations obtained from the late 1970's until present.
    Keywords: Earth Resources and Remote Sensing
    Type: Symposium for the 20th Anniversary of the Montreal Protocol/National Observatory of Athens; Sep 23, 2007 - Sep 26, 2007; Athens; Greece
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: We use a series of chemical transport model and chemistry climate model simulations to investigate the observed negative trends in MOPITT CO over several regions of the world, and to examine the consistency of timedependent emission inventories with observations. We find that simulations driven by the MACCity inventory, used for the Chemistry Climate Modeling Initiative (CCMI), reproduce the negative trends in the CO column observed by MOPITT for 2000-2010 over the eastern United States and Europe. However, the simulations have positive trends over eastern China, in contrast to the negative trends observed by MOPITT. The model bias in CO, after applying MOPITT averaging kernels, contributes to the model-observation discrepancy in the trend over eastern China. This demonstrates that biases in a model's average concentrations can influence the interpretation of the temporal trend compared to satellite observations. The total ozone column plays a role in determining the simulated tropospheric CO trends. A large positive anomaly in the simulated total ozone column in 2010 leads to a negative anomaly in OH and hence a positive anomaly in CO, contributing to the positive trend in simulated CO. These results demonstrate that accurately simulating variability in the ozone column is important for simulating and interpreting trends in CO.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN34769 , Atmospheric Chemistry and Physics (e-ISSN 1680-7324); 16; 11; 7285-7924
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: NASA's Goddard Earth Observing System (GEOS) Earth System Model (ESM) is a modular, general circulation model (GCM) and data assimilation system (DAS) that is used to simulate and study the coupled dynamics, physics, chemistry, and biology of our planet. GEOS is developed by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. It generates near-real-time analyzed data products, reanalyses, and weather and seasonal forecasts to support research targeted to understanding interactions among Earth-System processes. For chemistry, our efforts are focused on ozone and its influence on the state of the atmosphere and oceans, and on trace-gas data assimilation and global forecasting at mesoscale discretization. Several chemistry and aerosol modules are coupled to the GCM, which enables GEOS to address topics pertinent to NASA's Earth Science Mission. This manuscript describes the atmospheric chemistry components of GEOS and provides an overview of its Earth System Modeling Framework (ESMF)-based software infrastructure, which promotes a rich spectrum of feedbacks that influence circulation and climate, and impact human and ecosystem health. We detail how GEOS allows model users to select chemical mechanisms and emission scenarios at run time, establish the extent to which the aerosol and chemical components communicate, and decide whether either or both influence the radiative transfer calculations. A variety of resolutions facilitates research on spatial and temporal scales relevant to problems ranging from hourly changes in air quality to trace gas trends in a changing climate. Samples of recent GEOS chemistry applications are provided.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN49751 , Journal of Advances in Modeling Earth Systems (e-ISSN 1942-2466); 9; 8; 3019-3044
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...