ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Dissolved oxygen  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Environmental management 18 (1994), S. 73-92 
    ISSN: 1432-1009
    Keywords: Lakes ; Water Quality ; Dissolved oxygen ; Model ; Climate change
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract A deterministic, one-dimensional, unsteady numerical model has been developed, tested, and applied to simulate mean daily dissolved oxygen (DO) characteristics in 27 lake classes in the state of Minnesota. Reaeration and photosynthesis are the oxygen sources, while respiration, sedimentary, and biochemical water column oxygen demand are the sinks of oxygen in the model. The lake classes are differentiated by surface area (A s), maximum depth (H max), and trophic status expressed as Secchi depth (Z s). Because lake stratification is most important to lake oxygen dynamics, simulated DO characteristics are plotted in terms of a stratification parameterA s/H max 0.25 and Secchi depthZ s. Simulations provide DO profiles on a daily time scale. Specific DO characteristics of ecological and environmental interest are epilimnetic DO, hypolimnetic DO, DO gradient from surface to bottom, and DO minima and maxima. Specific results are as follows: Simulated mean daily and weekly DO values in the epilimnion of all lakes for both past and future climate scenarios are near saturation over the summer season. Hypolimnetic DO values depend strongly on lake morphometry, trophic status, and time throughout the summer season. Future climate conditions are specified as the historical records from 1955 to 1979, adjusted (monthly) by the 2 × CO2 GISS model output to account for doubling of atmospheric CO2. With this climate change, weekly averaged epilimnetic DO is projected to drop by less than 2 mg/liter, and will remain above 7 mg/liter throughout the open water season. The hypolimnetic DO reductions after climate change are on the order of 2–8 mg/liter. Periods of anoxia are longer by as much as 80 days. Those changes would alter water quality dynamics in lakes and have a profound effect on lake ecosystems including indigenous fishes. The results presented are useful for evaluating environmental management options.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...