ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • electron density  (2)
  • Disentangling ionospheric refraction and diffraction effects in GNSS raw phase through fast iterative filtering technique  (1)
  • 1
    Publication Date: 2020-07-02
    Description: We contribute to the debate on the identification of phase scintillation induced by the ionosphere on the Global Navigation Satellite System (GNSS) by introducing a phase detrending method able to provide realistic values of the phase scintillation index at high latitude. It is based on the Fast Iterative Filtering (FIF) signal decomposition technique, which is a recently developed fast implementation of the well-established Adaptive Local Iterative Filtering (ALIF) algorithm. FIF has been conceived to decompose nonstationary signals efficiently and providing a discrete set of oscillating functions, each of them having its frequency. It overcomes most of the problems that arise when using traditional time-frequency analysis techniques and relies on a consolidated mathematical basis since its a priori convergence and stability have been proved. By relying on the capability of FIF to efficiently identify the frequencies embedded in the GNSS raw phase, we define a method based on the FIF-derived spectral features to identify the proper cutoff frequency for phase detrending. To test such a method, we analyze the data acquired from GPS and Galileo signals over Antarctica during the September 2017 storm by the Ionospheric Scintillation Monitor Receiver (ISMR) located in Concordia Station (75.10°S, 123.33°E). Different cases of diffraction and refraction effects are provided, showing the capability of the method in deriving a more accurate determination of the SigmaPhi index. We found values of cutoff frequency in the range of 0.73 to 0.83 Hz, providing further evidence of the inadequacy of the choice of 0.1 Hz, which is often used when dealing with ionospheric scintillation monitoring at high latitudes.
    Description: This research is supported by TREASURE, a project funded by the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Actions grant agreement n.722023 (http://ww.treasure-gnss.eu).
    Description: Published
    Description: id 85
    Description: 2TM. Divulgazione Scientifica
    Description: JCR Journal
    Keywords: ionospheric scintillation · plasma drift velocity · scintillation indices · refractive and diffractive effects · Galileo and GPS signals · data detrending ; Disentangling ionospheric refraction and diffraction effects in GNSS raw phase through fast iterative filtering technique
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-23
    Description: We analyse Swarm satellite magnetic field and electron density data one month before and one month after 12 strong earthquakes that have occurred in the first 2.5 years of Swarm satellite mission lifetime in the Mediterranean region (magnitude M6.1+) or in the rest of the world (M6.7+). The search for anomalies was limited to the area centred at each earthquake epicentre and bounded by a circle that scales with magnitude according to the Dobrovolsky’s radius. We define the magnetic and electron density anomalies statistically in terms of specific thresholds with respect to the same statistical quantity along the whole residual satellite track (|geomagnetic latitude| ≤ 50°, quiet geomagnetic conditions). Once normalized by the analysed satellite tracks, the anomalies associated to all earthquakes resemble a linear dependence with earthquake magnitude, so supporting the statistical correlation with earthquakes and excluding a relationship by chance.
    Description: Published
    Description: ID 371
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Keywords: geomagnetic field ; electron density ; seismic precursors ; strong and intermediate earthquakes ; Swarm satellites
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-28
    Description: In this work, we preliminary analyse ionospheric electron density as observed by the first China Seismo-Electromagnetic Satellite (CSES-01) from April 2018 to July 2019, defining an anomaly along each track objectively. We then apply a worldwide statistical correlation in space and time of these anomalies with respect to M5.5+ shallow earthquakes (USGS source) occurred in the same period. Although the data are short and cover discontinuously the period of concern, in general, the preliminary results seem to confirm those obtained with an analogous analysis on the Swarm satellite data recently published in De Santis A. et al., Sci. Rep., 9, (2019) 20287.
    Description: This work has been performed in the framework of four different projects: LIMADOUScienza, funded by the Italian Space Agency, Further, funded by INGV, Working Earth (Pianeta Dinamico CUP: D53J19000170001), funded by the Italian MUR ministry and Dragon 5 cooperation 2020–2024 project (ID.59236).
    Description: Published
    Description: 119
    Description: 7T. Variazioni delle caratteristiche crostali e "precursori"
    Description: JCR Journal
    Keywords: CSES ; earthquake ; electron density ; ionosphere ; precursors ; 01.02. Ionosphere ; 04.05. Geomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...