ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 161 (2014): 21-25, doi:10.1016/j.cbpc.2013.12.005.
    Description: Results of recent studies showed that 2,3,4,7,8-pentachlorodibenzofuran (PeCDF) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are equipotent in domestic chicken (Gallus gallus domesticus) while PeCDF is more potent than TCDD in ring-necked pheasant (Phasianus colchicus) and Japanese quail (Coturnix japonica). To elucidate the mechanism(s) underlying these differences in relative potency of PeCDF among avian species, we tested the hypothesis that this is due to species-specific differential binding affinity of PeCDF to the aryl hydrocarbon receptor 1 (AHR1). Here, we modified a cell-based binding assay that allowed us to measure the binding affinity of dioxin-like compounds (DLCs) to avian AHR1 expressed in COS-7 (fibroblast-like cells). The results of the binding assay show that PeCDF and TCDD bind with equal affinity to chicken AHR1, but PeCDF binds with greater affinity than TCDD to pheasant (3-fold) and Japanese quail (5-fold) AHR1. The current report introduces a COS-7 whole-cell binding assay and provides a mechanistic explanation for differential relative potencies of PeCDF among species of birds.
    Description: This research was supported by an unrestricted grant from the Dow Chemical Company to the University of Ottawa, Environment Canada’s Wildlife Toxicology and Disease and STAGE programs and, in part, by a Discovery Grant from the National Science and Engineering Research Council of Canada (Project # 326415-07). The authors wish to acknowledge the support of an instrumentation grant from the Canada Foundation for Infrastructure. Professor Giesy was supported by the Canada Research Chair program and an at large Chair Professorship at the Department of Biology and Chemistry and State Key Laboratory in Marine Pollution, City University of Hong Kong, and the Einstein Professor Program of the Chinese Academy of Sciences. M. Hahn was supported by NOAA Sea Grant (grant number NA06OAR4170021 (R/B-179)).
    Keywords: Aryl hydrocarbon receptor ; Cell-based binding assay ; Dioxin ; COS-7 cells ; Bird ; PeCDF ; TCDD
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in NeuroToxicology 52 (2016): 134-143, doi:10.1016/j.neuro.2015.11.012.
    Description: Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants. The most toxic PCBs are the non-ortho-substituted ("dioxin-like") congeners that act through the aryl hydrocarbon receptor (AHR) pathway. In humans, perinatal exposure to dioxin-like PCBs is associated with neurodevelopmental toxicity in children. Yet, the full potential for later-life neurobehavioral effects that result from early-life low level exposure to dioxin-like PCBs is not well understood. The objective of this study was to determine the effects of developmental exposure to low levels of dioxin-like PCBs on early- and later-life behavioral phenotypes using zebrafish as a model system. We exposed zebrafish embryos to either vehicle (DMSO) or low concentrations of PCB126 (0.3, 0.6, 1.2 nM) for 20 hours (4-24 hours post fertilization), and then reared them to adulthood in clean water. Locomotor activity was tested at two larval stages (7 and 14 days post fertilization). Adult fish were tested for anxiety-related behavior using the novel tank and shoaling assays. Adult behavioral assays were repeated several times on the same group of fish and effects on intra- and inter-trial habituation were determined. While there was no effect of PCB126 on larval locomotor activity in response to changes in light conditions, developmental exposure to PCB126 resulted in impaired short- and long-term habituation to a novel environment in adult zebrafish. Cyp1a induction was measured as an indicator for AHR activation. Despite high induction at early stages, cyp1a expression was not induced in the brains of developmentally exposed adult fish that showed altered behavior, suggesting that AHR was not activated at this stage. Our results demonstrate the effectiveness of the zebrafish model in detecting subtle and delayed behavioral effects resulting from developmental exposure to an environmental contaminant.
    Description: This work was supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution (with funding provided by the Townsend Postdoctoral Scholarship Fund, and the John H. Steele Endowment in support of Postdoctoral Research) and by the Woods Hole Center for Oceans and Human Health (NIH grant P01ES021923 and National Science Foundation Grant OCE-1314642 to MEH and NA.).
    Keywords: Zebrafish ; PCB126 ; Dioxin ; Developmental neurotoxicity ; Anxiety ; Habituation
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Toxicological Sciences 131 (2013): 139-152, doi:10.1093/toxsci/kfs259.
    Description: The sensitivity of avian species to the toxic effects of dioxin-like compounds (DLCs) varies up to 1000-fold among species and this variability has been associated with inter-species differences in aryl hydrocarbon receptor 1 ligand binding domain (AHR1 LBD) sequence. We previously showed that LD50 values, based on in ovo exposures to DLCs, were significantly correlated with in vitro EC50 values obtained with a luciferase reporter gene (LRG) assay that measures AHR1-mediated induction of cytochrome P4501A in COS-7 cells transfected with avian AHR1 constructs. Those findings suggest that the AHR1 LBD sequence and the LRG assay can be used to predict avian species sensitivity to DLCs. In the present study, the AHR1 LBD sequences of 86 avian species were studied and differences at amino acid sites 256, 257, 297, 324, 337 and 380 were identified. Site-directed mutagenesis, the LRG assay and homology modeling highlighted the importance of each amino acid site in AHR1 sensitivity to 2,3,8,8-tetrachlorodibenzo-p-dioxin and other DLCs. The results of the study revealed that: (1) only amino acids at sites 324 and 380 affect the sensitivity of AHR1 expression constructs of 86 avian species to DLCs and (2) in vitro luciferase activity in AHR1 constructs containing only the LBD of the species of interest is significantly correlated (r2 = 0.93, p〈0.0001) with in ovo toxicity data for those species. These results indicate promise for the use of AHR1 LBD amino acid sequences independently, or combined with the LRG assay, to predict avian species sensitivity to DLCs.
    Description: This research was supported by unrestricted grants from the Dow Chemical Company and Georgia-Pacific LLC to the University of Ottawa, Environment Canada’s STAGE program and, in part, by a Discovery Grant from the National Science and Engineering Research Council of Canada (Project # 326415-07). The authors wish to acknowledge the support of an instrumentation grant from the Canada Foundation for Infrastructure. Professor Giesy was supported by the Canada Research Chair program and an at large Chair Professorship at the Department of Biology and Chemistry and State Key Laboratory in Marine Pollution, City University of Hong Kong, the Einstein Professor Program of the Chinese Academy of Sciences and the Visiting Professor Program of King Saud University. M. Hahn and S. Karchner were supported by NOAA Sea Grant (grant number NA06OAR4170021 (R/B-179)), and by the Walter A. and Hope Noyes Smith endowed chair.
    Description: 2013-08-24
    Keywords: Dioxin ; Risk assessment ; Bird ; Ah receptor ; Molecular toxicology
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: image/tiff
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Current Opinion in Toxicology 2 (2017): 58-71, doi:10.1016/j.cotox.2017.02.003
    Description: The aryl hydrocarbon receptor (AHR) was for many years of interest only to pharmacologists and toxicologists. However, this protein has fundamental roles in biology that are being revealed through studies in diverse animal species. The AHR is an ancient protein. AHR homologs exist in most major groups of modern bilaterian animals, including deuterostomes (chordates, hemichordates, echinoderms) and the two major clades of protostome invertebrates [ecdysozoans (e.g. arthropods and nematodes) and lophotrochozoans (e.g. molluscs and annelids)]. AHR homologs also have been identified in cnidarians such as the sea anemone Nematostella and in the genome of Trichoplax, a placozoan. Bilaterians, cnidarians, and placozoans form the clade Eumetazoa, whose last common ancestor lived approximately 600 million years ago (MYA). The presence of AHR homologs in modern representatives of all these groups indicates that the original eumetazoan animal possessed an AHR homolog. Studies in invertebrates and vertebrates reveal parallel functions of AHR in the development and function of sensory neural systems, suggesting that these may be ancestral roles. Vertebrate animals are characterized by the expansion and diversification of AHRs, via gene and genome duplications, from the ancestral protoAHR into at least five classes of AHR-like proteins: AHR, AHR1, AHR2, AHR3, and AHRR. The evolution of multiple AHRs in vertebrates coincided with the acquisition of high-affinity binding of halogenated and polynuclear aromatic hydrocarbons and the emergence of adaptive functions involving regulation of xenobiotic-metabolizing enzymes and roles in adaptive immunity. The existence of multiple AHRs may have facilitated subfunction partitioning and specialization of specific AHR types in some taxa. Additional research in diverse model and non-model species will continue to enrich our understanding of AHR and its pleiotropic roles in biology and toxicology.
    Description: M.E.H. and S.I.K are grateful for the long-term support of our AHR research from the National Institute of Environmental Health Sciences (NIEHS) through grants R01ES006272 and P42ES007381 (Superfund Research Program at Boston University). We also acknowledge support from a WHOI Independent Study Award funded by the Andrew W. Mellon Foundation Endowed Fund for Innovative Research. R.R.M. acknowledges support from the NIH National Center for Research Resources RI-INBRE (P20RR016457), National Science Foundation EPSCoR Cooperative Agreement #EPS-1004057, a MDIBL New Investigator Award funded by ME-INBRE (P20RR016463), and NIEHS grant P30ES003828.
    Keywords: Ah receptor ; Aryl hydrocarbon receptor ; bHLH-PAS ; Dioxin ; Evolution ; Development ; Metazoan ; Vertebrate ; Fish ; Genome duplication ; Gene expression
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...