ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Density-dependence; Herbivory  (1)
  • Key words Ants   (1)
Collection
Keywords
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 111 (1997), S. 91-98 
    ISSN: 1432-1939
    Keywords: Key words Ants  ;  Density-dependence  ;  Rodents  ;  Seed dispersal  ;  Seedling recruitment
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The post-dispersal fate of seeds and fruit (diaspores) of three vertebrate-dispersed trees, Crataegus monogyna, Prunus mahaleb and Taxus baccata, was studied in the Andalusian highlands, south-eastern Spain. Exclosures were used to quantify separately the impact of vertebrates and invertebrates on seed removal in relation to diaspore density and microhabitat. The three plant species showed marked differences in the percentage of diaspores removed, ranging from only 5% for C. monogyna to 87% for T. baccata. Although chaffinches (Fringilla coelebs) fed on diaspores, rodents (Apodemus sylvaticus) were the main vertebrate removers of seed and fruit. Two species of ant (Cataglyphis velox and Aphaenogaster iberica) were the only invertebrates observed to remove diaspores. However, the impact of ants was strongly seasonal and they only removed P. mahaleb fruit to any significant extent. While removal of seed by rodents was equivalent to predation, ants were responsible for secondary dispersal. However, their role was limited to infrequent, small-scale redistribution of fruit in the vicinity of parent trees. Rodents and ants differed in their use of different microhabitats. Rodents foraged mostly beneath trees and low shrubs and avoided open areas while the reverse was true of ants. Thus, patterns of post-dispersal seed removal will be contigent on the relative abundance and distribution of ants and rodents. Studies which neglect to quantify separately the impacts of these two guilds of seed removers may fail to elucidate the mechanisms underlying patterns of post-dispersal seed removal. The coincidence of both increased seed deposition by the main avian dispersers (Turdus spp.) and increased seed predation with increasing vegetation height suggested that selection pressures other than post-dispersal seed predation shape the spatial pattern of seed dispersal. Rather than providing a means of escaping post-dispersal seed predators, dispersal appears to direct seeds to microhabitats most suitable for seedling survival. Nevertheless, the reliance of most vertebrate-dispersed trees on regeneration by seed and the absence of persistent soil seed banks imply that post-dispersal seed predators may exert a strong influence on the demography of the plants whose seeds they consume. Even where microsites are limited, the coincidence of the most suitable microhabitats for seedling establishment with those where seed predation is highest provide a means by which selective seed predators can influence community composition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5052
    Keywords: Density-dependence; Herbivory ; Rodents ; Seed size ; Seedling recruitment ; Spatial heterogeneity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The considerable variability found in post-dispersal seed predation and the absence of consistent directional trends (e.g., with reference to seed size) has made it difficult to predict accurately the impact of seed predators on plant communities. We examined the variation attributable to location, seed density and seed burial on the removal of seeds of three tree species: Fraxinus excelsior, Taxus baccata and Ulmus glabra. Experiments were undertaken in five deciduous woodlands in Durham, U.K., and the relative importance of vertebrate and invertebrate seed predators was assessed using selective exclosures. In all five woodlands, seed removal was greatest from treatments to which vertebrates had access, and losses attributable to invertebrates were negligible. Rodents, in particular Apodemus sylvaticus (Muridae) and Clethrionomys glareolus (Cricetidae), were the principal seed consumers in these woodlands. Unidentified vertebrate seed predators (probably birds, rabbits and/or squirrels) appeared to be significant seed removers in three of the five woodlands. Rates of removal differed among the three tree species, increasing in the following order Fraxinus 〈 Taxus 〈 Ulmus but were not related to seed mass. The major effect influencing rates of seed removal was seed burial, which halved rates of seed removal overall. The effect of seed burial was a function of seed size. The larger seeds of Taxus realising little benefit from seed burial whereas encounter of the smaller Ulmus seeds fell by almost two-thirds. Removal was density-dependent for all three species. However, the relative increase in seed encounter through an increase in seed density was a negative function of seed size. This suggests that, for large seeds, the opportunity to escape seed predation via burial or reduced seed density is limited. These results reveal a number of parallels with other studies of post-dispersal predation and identify several generalities regarding the interaction between plants and post-dispersal seed predators. Comparison of the seed predation results with actual seedling distributions suggests that seed predators may influence regeneration of Ulmus glabra but probably play a lesser role in the dynamics of Taxus baccata and Fraxinus excelsior.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...