ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Deglaciation  (3)
Collection
Keywords
Publisher
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 30 (2015): 174–195, doi:10.1002/2014PA002649.
    Description: During the last deglaciation, the ventilation of the subarctic Pacific is hypothesized to have changed dramatically, including the rejuvenation of a poorly ventilated abyssal water mass that filled the deep ocean, and fluctuations in the strength of North Pacific intermediate and deep water formation at millennial timescales. Foraminiferal radiocarbon reconstructions of past ventilation changes in the Pacific are valuable but are hampered by poor carbonate preservation, low sediment accumulation rates, bias from bioturbation, and poorly constrained past surface reservoir age. In this study, we present paired benthic-planktonic radiocarbon measurements from the Okhotsk Sea and Emperor Seamounts. We take advantage of large contemporaneous peaks in benthic abundances from the last glacial maximum, Bolling-Allerod (BA), and early Holocene to produce time slices of radiocarbon from 1 to 4 km water depth. We explore the impact of uncertain surface reservoir age and evaluate several approaches to quantifying past ocean radiocarbon distribution using our NW Pacific data and a compilation of published data from the North Pacific. Both the calendar age and the absolute value of an ocean radiocarbon estimate depend on the assumed surface reservoir age. But for a time slice from a small geographical area with radiocarbon-independent stratigraphic correlation between cores, the shape of a water column profile is independent of surface reservoir age. The NW Pacific profiles are similar in shape to the compilation profiles for the entire North Pacific, which suggests that deglacial surface reservoir age changes across the N Pacific did not diverge dramatically across the areas sampled. The Last Glacial Maximum (LGM) profile 〉2 km spans a wide range of values, ranging from values similar to today to lower than today. However, by the BA the profile has a similar shape to today. Ultimately, local surface reservoir ages, end-member water mass composition, and mixing ratios must each be constrained before a radiocarbon activity reconstruction can be used to confidently infer ventilation changes.
    Description: Support for this project was from NSF grants 0526764, 8312240, and 9912122, and the Williams College Divisional Research Funding Committee. M.S.C. participated in the GAIN writing retreat, which was support by NSF grants 0620101 and 0620087.
    Description: 2015-09-12
    Keywords: Deglaciation ; Radiocarbon ; Pacific Ocean ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: image/gif
    Format: text/plain
    Format: application/postscript
    Format: text/csv
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Continental Shelf Research 96 (2015): 45-55, doi:10.1016/j.csr.2015.01.008.
    Description: We report planktonic foraminiferal fluxes (accumulation rates) and oxygen isotopes (δ18O) from a nine-month sediment trap deployment, and δ18O from three sediment cores in Jordan Basin, Gulf of Maine. The sediment trap was deployed at 150 m, about halfway to the basin floor, and samples were collected every three weeks between August 2010 and May 2011. The planktonic foraminiferal fauna in the trap is dominated by Neogloboquadrina incompta that reached a maximum flux in the second half of October. Oxygen isotope ratios on that species indicate that on average during the collecting period it lived in the surface mixed layer, when compared to predicted values based on data from a nearby hydrographic buoy from the same period. New large diameter piston cores from Jordan Basin are 25 and 28 m long. Marine hemipelagic sediments are 25 m thick, and the sharp contact with underlying red deglacial sediments is bracketed by two radiocarbon dates on bivalves that indicate ice-free conditions began 16,900 calibrated years ago. Radiocarbon dating of foraminifera indicates that the basin floor sediments (270-290 m) accumulated at 〉3 m/kyr during the Holocene, whereas rates were about one tenth that on the basin slope (230 m). In principle, Jordan Basin sediments have the potential to provide time series with interannual resolution. Our results indicate the Holocene is marked by ~2°C variability in SST, and the coldest events of the 20th century, during the mid 1960s and mid 1920s, appear to be recorded in the uppermost 50 cm of the seafloor.
    Description: Cruise 198 of R/V Knorr was supported by the Grayce B. Kerr Fund.
    Keywords: Holocene ; Deglaciation ; Sediment trap ; Foraminifera ; Radiocarbon ; Oxygen isotope
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B. V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 52 (2005): 2163-2173, doi:10.1016/j.dsr2.2005.07.004.
    Description: The lithology of deglacial sediments from the Bering Sea includes intervals of laminated or dysaerobic sediments. These intervals are contemporaneous with the occurrence of laminated sediments from the California margin and Gulf of California, which suggests widespread low-oxygen conditions at intermediate depths in the North Pacific Ocean. The cause could be reduced intermediate water ventilation, increased organic carbon flux, or a combination of the two. We infer abrupt decreases of planktonic foraminifer δ18O at 14,400 y BP and 11,650 y BP, which may be a combination of both freshening and warming. On the Shirshov Ridge, the abundance of sea-ice diatoms of the genus Nitzschia reach local maxima twice during the deglaciation, the latter of which may be an expression of the Younger Dryas. These findings expand the extent of the expression of deglacial millennial-scale climate events to include the northernmost Pacific.
    Description: The Oak Foundation of Boston, Massachusetts, and the WHOI Academic Programs Office provided support for Mea Cook. This project was funded by NSF grant OPP-9912122.
    Keywords: Anoxic sediments ; Deglaciation ; Diatoms ; Foraminifera ; Oxygen isotope stratigraphy ; Bering Sea
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 278378 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...