ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1327
    Keywords: Key words CuA domain ; Thermus thermophilus ; Cytochrome ba3 ; Electrochemistry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract  The electrochemistry of a water-soluble fragment from the CuA domain of Thermus thermophilus cytochrome ba 3 has been investigated. At 25  °C, CuA exhibits a reversible reduction at a pyridine-4-aldehydesemicarbazone-modified gold electrode (0.1 M Tris, pH 8) with E° = 0.24 V vs NHE. Thermodynamic parameters for the [Cu(Cys)2Cu]+/0 electrode reaction were determined by variable-temperature electrochemistry (ΔS°rc = –5.4(12) eu, ΔS° = –21.0(12) eu, ΔH° = –11.9(4) kcal/mol;ΔG° = –5.6 (11) kcal/mol). The relatively small reaction entropy is consistent with a low reorganization energy for [Cu(Cys)2Cu]+/0 electron transfer. An irreversible oxidation of [Cu(Cys)2Cu]+ at 1 V vs NHE confirms that the CuII:CuII state of CuA is significantly destabilized relative to the CuII state of analogous blue-copper proteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-6881
    Keywords: Electron transfer ; cytochromec ; azurin ; ruthenium ; electronic coupling ; driving-force dependence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract Photochemical techniques have been used to measure the kinetics of intramolecular electron transfer in Ru(bpy)2(im)(His)2+-modified (bpy = 2,2′-bipyridine; im = imidazole) cytochromec and azurin. A driving-force study with the His33 derivatives of cytochromec indicates that the reorganization energy (γ) for Fe2+→Ru3+ ET reactions is 0.8 eV. Reductions of the ferriheme by either an excited complex,*Ru2+, or a reduced complex, Ru+, are anomalously fast and may involve formation of an electronically excited ferroheme. The distance dependence of Fe2+→Ru3+ and Cu+→Ru3+ electron transfer in 12 different Ru-modified cytochromes and azurins has been analyzed using a tunneling-pathway model. The ET rates in 10 of the 12 systems exhibit an exponential dependence on metal-metal separation (decay constant of 1.06 å−1) that is consistent with predictions of the pathway model.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...