ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of cluster science 11 (2000), S. 359-372 
    ISSN: 1572-8862
    Keywords: cadmium sulfide ; quantum dots ; DNA stabilized
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract In this work, the conditions required to transform quantum-confined cadmium sulfide (Q-CdS) nanoparticles stabilized by calf thymus deoxyribonucleic acid from deep trap photoluminescent states to “band edge”-type luminescence are probed. The presence of fivefold excess sulfide relative to cadmium concentration during cluster synthesis, followed by mild heating at 80°C, results in the desired transformation of the Q-CdS emission spectrum. We also indirectly analyze the accompanying structural changes in the polymeric stabilizer, accomplished in this case by use of well-known spectrofluorometric methods with the dyes ethidium bromide and trisphenanthroline ruthenium(II).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-11
    Description: This paper presents experimental results on a set of 4 thermo-mechanical research tasks aimed at Titan and Venus aerobots: 1. A cryogenic balloon materials development program culminating in the fabrication and testing of a 4.6 m long blimp prototype at 93K. 2. A combined computational and experimental thermal analysis of the effect of radioisotope power system (RPS) waste heat on the behavior of a helium filled blimp hull. 3. Aerial deployment and inflation testing using a blimp 4. A proof of concept experiment with an aerobot-mounted steerable high gain antenna These tasks were supported with JPL internal R&D funds and executed by JPL engineers with substantial industry collaboration for Task #1, the cryogenic balloon materials
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: In this paper, we discuss steps towards the development of an autonomy architecture, and concentrate on the autonomous flight control subsystem.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Type: Robotics Science and Systems; Jun 08, 2005 - Jun 11, 2005; Cambridge, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: This paper describes the design and component testing of an aerobot that would be capable of global in situ exploration of Saturn's moon, Titan, over a 6 to 12 month mission lifetime. The proposed aerobot is a propeller-driven, buoyant vehicle that resembles terrestrial airships. However, the extremely cold Titan environment requires the use of cryogenic materials of construction and careful thermal design for protection of temperature-sensitive payload elements. Multiple candidate balloon materials have been identified based on extensive laboratory testing at 77 K. The most promising materials to date are laminates comprised of polyester fabrics and/or films with areal densities in the range of 40-100 g/m2. The aerobot hull is a streamlined ellipsoid 14 meters in length with a maximum diameter of 3 meters. The enclosed volume of 60 m3 is sufficient to float a mass of 234 kg at a maximum altitude of 8 km at Titan. Forward and aft ballonets are located inside the hull to enable the aerobot to descend to the surface while preserving a fully inflated streamlined shape. Altitude changes are effected primarily through thrust vectoring of the twin main propellers, with pressure modulated buoyancy change via the ballonets available as a slower backup option. A total of 100 W of electrical power is provided to the vehicle by a radioisotope power supply. Up to half of this power is available to the propulsion system to generate a top flight speed in the range of 1-2 m/s. This speed is expected to be greater than the near surface winds at Titan, enabling the aerobot to fly to and hover over targets of interest. A preliminary science payload has been devised for the aerobot to give it the capability for aerial imaging of the surface, atmospheric observations and sampling, and surface sample acquisition and analysis. Targeting, hovering, surface sample acquisition and vehicle health monitoring and automatic safing actions will all require significant on-board autonomy due to the over two hour round trip light time between Titan and Earth. An autonomy architecture and a core set of perception, reasoning and control technologies is under development using a free-flying airship testbed of approximately the same size as the proposed Titan aerobot. Data volume from the Titan science mission is expected to be on the order of 100-300 Mbit per day transmitted either direct to Earth through an 0.8 m high gain antenna or via an orbiter relay using an omni-directional antenna on the aerobot.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Type: 35th Committee on Space Research (COSPAR) Scientific Assembly; Jul 18, 2004 - Jul 25, 2004; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The Huygens probe arrived at Saturn's moon Titan on January 14, 2005, unveiling a world that is radically different from any other in the Solar system. The data obtained, complemented by continuing observations from the Cassini spacecraft, show methane lakes, river channels and drainage basins, sand dunes, cryovolcanos and sierras. This has lead to an enormous scientific interest in a follow-up mission to Titan, using a robotic lighter-than-air vehicle (or aerobot). Aerobots have modest power requirements, can fly missions with extended durations, and have very long distance traverse capabilities. They can execute regional surveys, transport and deploy scientific instruments and in-situ laboratory facilities over vast distances, and also provide surface sampling at strategic science sites. This paper describes our progress in the development of the autonomy technologies that will be required for exploration of Titan. We provide an overview of the autonomy architecture and some of its key components. We also show results obtained from autonomous flight tests conducted in the Mojave desert.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Type: IEEEAC Paper 1296 , IEEE Aerospace 2008; Mar 01, 2008; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...