ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Institute of Biological Sciences, 2012. This article is posted here by permission of American Institute of Biological Sciences for personal use, not for redistribution. The definitive version was published in BioScience 62 (2012): 405-415, doi:10.1525/bio.2012.62.4.11.
    Description: The cryosphere—the portion of the Earth's surface where water is in solid form for at least one month of the year—has been shrinking in response to climate warming. The extents of sea ice, snow, and glaciers, for example, have been decreasing. In response, the ecosystems within the cryosphere and those that depend on the cryosphere have been changing. We identify two principal aspects of ecosystem-level responses to cryosphere loss: (1) trophodynamic alterations resulting from the loss of habitat and species loss or replacement and (2) changes in the rates and mechanisms of biogeochemical storage and cycling of carbon and nutrients, caused by changes in physical forcings or ecological community functioning. These changes affect biota in positive or negative ways, depending on how they interact with the cryosphere. The important outcome, however, is the change and the response the human social system (infrastructure, food, water, recreation) will have to that change.
    Description: The authors wish to thank the funding provided by the National Science Foundation’s (NSF) Long Term Ecological Research (LTER) Network for supporting our long-term studies, in which we track the ecosystem response to the disappearing cryosphere. NSF LTER Site Grants OPP 0823101, OPP 1115245, DEB 1114804, DEB-1026415, DEB-0620579, and DEB-1027341 supported the authors during the preparation of this article.
    Description: 2012-10-01
    Keywords: Cryosphere ; Ecosystem response ; Environmental observatories
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biogeochemistry 43 (1998), S. 1-15 
    ISSN: 1573-515X
    Keywords: alpine ; nitrogen cycling ; nitrogen saturation ; snowmelt ; tundra
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Recent work in seasonally snow covered ecosystems has identifiedthawed soil and high levels of heterotrophic activity throughout the winterunder consistent snow cover. We performed measurements during the winter of1994 to determine how the depth and timing of seasonal snow cover affectsoil microbial populations, surface water NO $${\text{NO}}_{\text{3}}^{\text{ - }} $$ loss during snowmelt, and plant Navailability early in the growing season. Soil under early accumulating,consistent snow cover remained thawed during most of the winter and bothmicrobial biomass and soil inorganic N pools gradually increased under thesnowpack. At the initiation of snowmelt, microbial biomass N pools increasedfrom 3.0 to 5.9 g n m-2,concurrent with a decrease in soil inorganic N pools. During the latterstages of snowmelt, microbial biomass N pools decreased sharply without aconcurrent increase in inorganic N pools or significant leaching losses. Incontrast, soil under inconsistent snow cover remained frozen during most ofthe winter. During snowmelt, microbial biomass initially increased from 1.7to 3.1 g N m-2 and thendecreased as sites became snow-free. In contrast to smaller pool sizes,NO $${\text{NO}}_{\text{3}}^{\text{ - }} $$ export during snowmeltfrom the inconsistent snow cover sites of 1.14 (±0.511) g N m-2 was significantly greater (p〈 0.001) than the 0.27 (±0.16) g N m-2 exported from sites with consistent snowcover. These data suggest that microbial biomass in consistentlysnow-covered soil provides a significant buffer limiting the export ofinorganic N to surface water during snowmelt. However, this buffer is verysensitive to changes in snowpack regime. Therefore, interannual variabilityin the timing and depth of snowpack accumulation may explain the year toyear variability in inorganic N concentrations in surface water theseecosystems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...