ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © Elsevier B.V., 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Lithos 109 (2009): 131-143, doi:10.1016/j.lithos.2008.10.014.
    Description: Can mineral physics and mixing theories explain field observations of seismic velocity and electrical conductivity, and is there an advantage to combining seismological and electromagnetic techniques? These two questions are at the heart of this paper. Using phenomologically-derived state equations for individual minerals coupled with multi-phase, Hashin-Shtrikman extremal-bound theory we derive the likely shear and compressional velocities and electrical conductivity at three depths, 100 km, 150 km and 200 km, beneath the central part of the Slave craton and beneath the Kimberley region of the Kaapvaal craton based on known petrologically-observed mineral abundances and magnesium numbers, combined with estimates of temperatures and pressures. We demonstrate that there are measurable differences between the physical properties of the two lithospheres for the upper depths, primarily due to the different ambient temperature, but that differences in velocity are negligibly small at 200 km. We also show that there is an advantage to combining seismic and electromagnetic data, given that conductivity is exponentially dependent on temperature whereas the shear and bulk moduli have only a linear dependence in cratonic lithospheric rocks. Focussing on a known discontinuity between harzburgite-dominated and lherzolitic mantle in the Slave craton at a depth of about 160 km, we demonstrate that the amplitude of compressional (P) wave to shear (S) wave conversions would be very weak, and so explanations for the seismological (receiver function) observations must either appeal to effects we have not considered (perhaps anisotropy), or imply that the laboratory data require further refinement.
    Keywords: Archean lithosphere ; Seismic velocity ; Electrical conductivity ; Mineral physics ; Extremal bounds ; Velocity-conductivity relationship
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): B04105, doi:10.1029/2010JB007883.
    Description: A regional-scale magnetotelluric (MT) experiment across the southern African Kaapvaal craton and surrounding terranes, called the Southern African Magnetotelluric Experiment (SAMTEX), has revealed complex structure in the lithospheric mantle. Large variations in maximum resistivity at depths to 200–250 km relate directly to age and tectonic provenance of surface structures. Within the central portions of the Kaapvaal craton are regions of resistive lithosphere about 230 km thick, in agreement with estimates from xenolith thermobarometry and seismic surface wave tomography, but thinner than inferred from seismic body wave tomography. The MT data are unable to discriminate between a completely dry or slightly “damp” (a few hundred parts per million of water) structure within the transitional region at the base of the lithosphere. However, the structure of the uppermost ∼150 km of lithosphere is consistent with enhanced, but still low, conductivities reported for hydrous olivine and orthopyroxene at levels of water reported for Kaapvaal xenoliths. The electrical lithosphere around the Kimberley and Premier diamond mines is thinner than the maximum craton thickness found between Kimberley and Johannesburg/Pretoria. The mantle beneath the Bushveld Complex is highly conducting at depths around 60 km. Possible explanations for these high conductivities include graphite or sulphide and/or iron metals associated with the Bushveld magmatic event. We suggest that one of these conductive phases (most likely melt-related sulphides) could electrically connect iron-rich garnets in a garnet-rich eclogitic composition associated with a relict subduction slab.
    Description: In addition to the funding and logistical support provided by SAMTEX consortium members, this work is also supported by research grants from the National Science Foundation (EAR‐0309584 and EAR‐0455242 through the Continental Dynamics Program), the Department of Science and Technology, South Africa, and Science Foundation of Ireland (grant 05/RFP/ GEO001).
    Keywords: Electrical resistivity ; Lithosphere ; Craton ; Magnetotellurics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...