ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Aquatic Geochemistry 19 (2013): 371-397, doi:10.1007/s10498-013-9214-7.
    Description: Note from corresponding author: authors Feely and Shamberger were added after the initial submission, but before the final submission.
    Description: An array of MAPCO2 buoys, CRIMP-2, Ala Wai, and Kilo Nalu, deployed in the coastal waters of Hawaii have produced multiyear high temporal resolution CO2 records in three different coral reef environments off the island of Oahu, Hawaii. This study, which includes data from June 2008-December 2011, is part of an integrated effort to understand the factors that influence the dynamics of CO2-carbonic acid system parameters in waters surrounding Pacific high island coral reef ecosystems and subject to differing natural and anthropogenic stresses. The MAPCO2 buoys are located on the Kaneohe Bay backreef, and fringing reef sites on the south shore of O’ahu, Hawai’i. The buoys measure CO2 and O2 in seawater and in the atmosphere at 3-hour intervals, as well as other physical and biogeochemical parameters (CTD, chlorophyll-a, turbidity). The buoy records, combined with data from synoptic spatial sampling, have allowed us to examine the interplay between biological cycles of productivity/respiration and calcification/dissolution and biogeochemical and physical forcings on hourly to inter-annual time scales. Air-sea CO2 gas exchange was also calculated to determine if the locations were sources or sinks of CO2 over seasonal, annual, and interannual time periods. Net annualized fluxes for CRIMP-2, Ala Wai, and Kilo Nalu over the entire study period were 1.15 mol C m-2 yr-1, 0.045 mol C m-2 yr-1, and -0.0056 mol C m-2 yr-1, respectively, where positive values indicate a source or a CO2 flux from the water to the atmosphere, and negative values indicate a sink or flux of CO2 from the atmosphere into the water. These values are of similar magnitude to previous estimates in Kaneohe Bay as well as those reported from other tropical reef environments. Total alkalinity (AT) was measured in conjunction with pCO2 and the carbonic acid system was calculated to compare with other reef systems and open ocean values around Hawaii. These findings emphasize the need for high-resolution data of multiple parameters when attempting to characterize the carbonic-acid system in locations of highly variable physical, chemical, and biological parameters (e.g. coastal systems, reefs).
    Description: This work was supported in part by a grant/cooperative agreement from the National Oceanic and Atmospheric Administration, Project R/IR-3, which is sponsored by the University of Hawaii Sea Grant College Program, SOEST, under Institutional Grant No. NA09OAR4170060 from NOAA Office of Sea Grant, Department of Commerce.
    Description: 2014-11-06
    Keywords: Carbon dioxide ; Alkalinity ; Gas exchange ; Coral reefs ; Tropical
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 46(16), (2019): 9851-9860, doi:10.1029/2019GL083726.
    Description: Coral reef calcification is expected to decline due to climate change stressors such as ocean acidification and warming. Projections of future coral reef health are based on our understanding of the environmental drivers that affect calcification and dissolution. One such driver that may impact coral reef health is heterotrophy of oceanic‐sourced particulate organic matter, but its link to calcification has not been directly investigated in the field. In this study, we estimated net ecosystem calcification and oceanic particulate organic carbon (POCoc) uptake across the Kāne'ohe Bay barrier reef in Hawai'i. We show that higher rates of POCoc uptake correspond to greater net ecosystem calcification rates, even under low aragonite saturation states (Ωar). Hence, reductions in offshore productivity may negatively impact coral reefs by decreasing the food supply required to sustain calcification. Alternatively, coral reefs that receive ample inputs of POCoc may maintain higher calcification rates, despite a global decline in Ωar.
    Description: Data needed for calculations are available in the supporting information. Additional data can be provided upon request directly from the corresponding author or accessed by links provided in the supporting information. The authors declare no competing financial interests. We thank Texas Sea Grant for providing partial funding for this project to A. Kealoha through the Grants‐In‐Aid of Graduate Research Program. We also thank the NOAA Nancy Foster Scholarship for PhD program funding to A. Kealoha and Texas A&M University for funds awarded to Shamberger that supported this work. This research was also supported by funding from National Science Foundation Grant OCE‐1538628 to Rappé. The Hawaii Institute of Marine Biology (particularly the Rappé Lab and Jason Jones), NOAA's Coral Reef Ecosystem Program, Connie Previti, Serena Smith, and Chris Maupin were instrumental in sample collection and data analysis.
    Description: 2020-02-22
    Keywords: Coral reefs ; Ocean acidification ; Climate change ; Heterotrophy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 41 (2014): 499-504, doi:10.1002/2013GL058489.
    Description: Anthropogenic carbon dioxide emissions are acidifying the oceans, reducing the concentration of carbonate ions ([CO32−]) that calcifying organisms need to build and cement coral reefs. To date, studies of a handful of naturally acidified reef systems reveal depauperate communities, sometimes with reduced coral cover and calcification rates, consistent with results of laboratory-based studies. Here we report the existence of highly diverse, coral-dominated reef communities under chronically low pH and aragonite saturation state (Ωar). Biological and hydrographic processes change the chemistry of the seawater moving across the barrier reefs and into Palau's Rock Island bays, where levels of acidification approach those projected for the western tropical Pacific open ocean by 2100. Nevertheless, coral diversity, cover, and calcification rates are maintained across this natural acidification gradient. Identifying the combination of biological and environmental factors that enable these communities to persist could provide important insights into the future of coral reefs under anthropogenic acidification.
    Description: Funded by a WHOI-OLI Postdoctoral Scholarship to KEFS, NSF OCE-1041106 to A.L.C. and D.C.M. and TNC award PNA/WHOI061810 to A.L.C.
    Description: 2014-07-16
    Keywords: Coral reefs ; Ocean acidification ; Carbonate chemistry ; Diversity ; Palau ; Calcification
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/postscript
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...