ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 198 (1997), S. 73-84 
    ISSN: 1615-6102
    Keywords: Chlamydomonas reinhardtii ; Contractile vacuole ; Osmoregulation ; Videomicroscopy ; Electron microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The contractile vacuole (CV) cycle ofChlamydomonas reinhardtii has been investigated by videomicroscopy and electron microscopy. Correlation of the two kinds of observation indicates that the total cycle (15 s under the hypo-osmotic conditions used for videomicroscopy) can be divided into early, middle, and late stages. In the early stage (early diastole, about 3 s long) numerous small vesicles about 70–120 nm in diameter are present. In the middle stage (mid-diastole, about 6 s long), the vesicles appear to fuse with one another to form the contractile vacuole proper. In the late stage (late diastole, also about 6 s long), the CV increases in diameter by the continued fusion of small vesicles with the vacuole, and makes contact with the plasma membrane. The CV then rapidly decreases in size (systole, about 0.2 s). In isosmotic media, CVs do not appear to be functioning; under these conditions, the CV regions contain numerous small vesicles typical of the earliest stage of diastole. Fine structure observations have provided no evidence for a two-component CV system such as has been observed in some other cell types. Electron microscopy of cryofixed and freeze-substituted cells suggests that the irregularity of the profiles of larger vesicles and vacuoles and some other morphological details seen in conventionally fixed cells may be shrinkage artefacts. This study thus defines some of the membrane events in the normal contractile vacuole cycle ofChlamydomonas, and provides a morphological and temporal basis for the study of membrane fusion and fluid transport across membranes in a cell favorable for genetic analysis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...