ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-9001
    Keywords: Conformational stability ; variable-temperature FT–IR spectra ; krypton solutions ; methyl vinyl silane
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Variable-temperature (−55 to −155°C) studies of the infrared spectra (3500–400 cm−1) of methyl vinyl silane, CH2CHSiH2CH3, dissolved in liquid xenon and krypton have been recorded. Utilizing three sets of conformer doublets due to the cis and gauche rotamers, the enthalpy difference has been determined to be 133 ± 11 cm−1 (1.59 ± 0.13 kJ/mol) with the gauche conformer the more stable form in the krypton solution. In the xenon solution, the enthalpy difference could not be determined because the infrared bands become so broad and the overlap was so extensive that meaningful areas could not be determined. Ab initio calculations have been carried out with several different basis sets up to MP2/6-311+G(2d,2p) from which structural parameters and conformational stabilities have been determined. With the largest basis set, the cis conformer is predicted to be the more stable conformer, which is inconsistent with the experimental results. Utilizing previously reported microwave rotational constants for both conformers along with the ab initio predicted distances and angles, r 0 parameters have been obtained for both the cis and gauche conformers. The spectroscopic and theoretical results are compared to the corresponding quantities for some similar molecules.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-9001
    Keywords: Conformational stability ; structural parameters ; infrared and Raman intensities ; allyltrifluorosilane
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The Raman spectra (3500 to 30 cm−1) of allyltrifluorosilane, CH2CHCH2SiF3, in the liquid with quantitative depolarization ratios and solid states, and the infrared spectra (3500 to 30 cm−1) of the gas and solid have been recorded. Additionally, the mid-infrared spectra of the sample dissolved in liquified xenon as a function of temperature (−100° to −55°C) have been recorded. All of these data indicate there are two conformers, the more stable gauche rotamer and a very small amount of the cis conformer in the fluid states, but only the gauche form remains in the polycrystalline solid. The variable temperature studies of the infrared spectrum of the xenon solution indicate a relatively large enthalpy difference of 354±30 cm−1 (4.23±0.36 kJ/mol) between the conformers. The fundamental frequencies for the asymmetric (54 cm−1) and SiF3 (48 cm−1) torsions for the gauche conformer were observed in the far infrared spectrum, and from the SiF3 torsional frequency the barrier to internal rotation is calculated to have a value of 525 cm−1 (6.28 kJ/mol). A complete vibrational assignment is presented for the gauche conformer that is consistent with the predicted wavenumbers utilizing the force constants from ab initio MP2/6-31G* calculations. The optimized geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, depolarization ratios, and vibrational wavenumbers have been obtained from RHF/6-31G* and/or MP2/6-31G* ab initio calculations. These quantities are compared to the corresponding experimental quantities when appropriate as well as with corresponding results for some similar molecules.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1572-9001
    Keywords: Conformational stability ; structural parameters ; infrared and Raman intensities ; allylsilane
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The Raman spectra (3500 to 30 cm−1) of allylsilane, CH2CHCH2SiH3, in the liquid with quantitative depolarization ratios and solid states and the infrared spectra (3500 to 30 cm−1) of the gas and solid have been recorded. Similar data have also been recorded for the Si-d3 isotopomer. Additionally, the mid-infrared spectra of the normal sample dissolved in liquified xenon as a function of temperature (−100 to −50°C) have been recorded. All these data indicate there is a single conformer, the gauche rotamer, in all three physical states. Utilizing the Si-H stretching frequencies from the infrared spectrum of the gaseous CH2CHCH2SiD2H isotopomer, the three Si-H bond distances (r 0) are calculated to be 1.484 Å for the gauche conformer. The other r 0 parameters are estimated from the previously reported rotational constants. The fundamental frequencies for the asymmetric (78 cm−1) and SiH3 (137 cm−1) torsions were obtained from sum and difference bands with the SiH3 stretches. From the SiH3 torsional frequency the barrier to internal rotation is calculated to have a value of 731 cm−1 (8.74 kJ/mol). The optimized geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, depolarization ratios, and vibrational frequencies have been obtained from RHF/6-31G* and/or MP2/6-31G* ab initio calculations. These quantities are compared to the corresponding experimental quantities when appropriate as well as with some corresponding results for some similar molecules.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...