ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-08-15
    Description: The role of long noncoding RNA (lncRNA) in adult hearts is unknown; also unclear is how lncRNA modulates nucleosome remodelling. An estimated 70% of mouse genes undergo antisense transcription, including myosin heavy chain 7 (Myh7), which encodes molecular motor proteins for heart contraction. Here we identify a cluster of lncRNA transcripts from Myh7 loci and demonstrate a new lncRNA-chromatin mechanism for heart failure. In mice, these transcripts, which we named myosin heavy-chain-associated RNA transcripts (Myheart, or Mhrt), are cardiac-specific and abundant in adult hearts. Pathological stress activates the Brg1-Hdac-Parp chromatin repressor complex to inhibit Mhrt transcription in the heart. Such stress-induced Mhrt repression is essential for cardiomyopathy to develop: restoring Mhrt to the pre-stress level protects the heart from hypertrophy and failure. Mhrt antagonizes the function of Brg1, a chromatin-remodelling factor that is activated by stress to trigger aberrant gene expression and cardiac myopathy. Mhrt prevents Brg1 from recognizing its genomic DNA targets, thus inhibiting chromatin targeting and gene regulation by Brg1. It does so by binding to the helicase domain of Brg1, a domain that is crucial for tethering Brg1 to chromatinized DNA targets. Brg1 helicase has dual nucleic-acid-binding specificities: it is capable of binding lncRNA (Mhrt) and chromatinized--but not naked--DNA. This dual-binding feature of helicase enables a competitive inhibition mechanism by which Mhrt sequesters Brg1 from its genomic DNA targets to prevent chromatin remodelling. A Mhrt-Brg1 feedback circuit is thus crucial for heart function. Human MHRT also originates from MYH7 loci and is repressed in various types of myopathic hearts, suggesting a conserved lncRNA mechanism in human cardiomyopathy. Our studies identify a cardioprotective lncRNA, define a new targeting mechanism for ATP-dependent chromatin-remodelling factors, and establish a new paradigm for lncRNA-chromatin interaction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4184960/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4184960/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Han, Pei -- Li, Wei -- Lin, Chiou-Hong -- Yang, Jin -- Shang, Ching -- Nurnberg, Sylvia T -- Jin, Kevin Kai -- Xu, Weihong -- Lin, Chieh-Yu -- Lin, Chien-Jung -- Xiong, Yiqin -- Chien, Huan-Chieh -- Zhou, Bin -- Ashley, Euan -- Bernstein, Daniel -- Chen, Peng-Sheng -- Chen, Huei-Sheng Vincent -- Quertermous, Thomas -- Chang, Ching-Pin -- HL105194/HL/NHLBI NIH HHS/ -- HL109512/HL/NHLBI NIH HHS/ -- HL111770/HL/NHLBI NIH HHS/ -- HL116997/HL/NHLBI NIH HHS/ -- HL118087/HL/NHLBI NIH HHS/ -- HL121197/HL/NHLBI NIH HHS/ -- HL71140/HL/NHLBI NIH HHS/ -- HL78931/HL/NHLBI NIH HHS/ -- R01 HL111770/HL/NHLBI NIH HHS/ -- R01 HL116997/HL/NHLBI NIH HHS/ -- R01 HL121197/HL/NHLBI NIH HHS/ -- England -- Nature. 2014 Oct 2;514(7520):102-6. doi: 10.1038/nature13596. Epub 2014 Aug 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA [2] Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA. ; 1] Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA [2]. ; Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA. ; Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA. ; Stanford Genome Technology Center, Stanford University School of Medicine, Stanford, California 94305, USA. ; Department of Genetics, Pediatrics, and Medicine (Cardiology), Albert Einstein College of Medicine of Yeshiva University, 1301 Morris Park Avenue, Price Center 420, Bronx, New York 10461, USA. ; Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA. ; Del E. Webb Neuroscience, Aging &Stem Cell Research Center, Sanford/Burnham Medical Research Institute, La Jolla, California 92037, USA. ; 1] Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA [2] Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA [3] Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119045" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cardiac Myosins/genetics ; Cardiomegaly/*genetics/*pathology/prevention & control ; Cardiomyopathies/genetics/pathology/prevention & control ; Chromatin/genetics/metabolism ; Chromatin Assembly and Disassembly ; DNA Helicases/antagonists & inhibitors/chemistry/genetics/metabolism ; Feedback, Physiological ; Heart Failure/genetics/pathology/prevention & control ; Histone Deacetylases/metabolism ; Humans ; Mice ; Myocardium/metabolism/pathology ; Myosin Heavy Chains/*genetics ; Nuclear Proteins/antagonists & inhibitors/chemistry/genetics/metabolism ; Organ Specificity ; Poly(ADP-ribose) Polymerases/metabolism ; Protein Binding ; Protein Structure, Tertiary ; RNA, Long Noncoding/antagonists & inhibitors/*genetics/metabolism ; Transcription Factors/antagonists & inhibitors/chemistry/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-10-13
    Description: Author(s): Y. S. Chen, D. Reuter, A. D. Wieck, and G. Bacher [Phys. Rev. Lett. 107, 167601] Published Wed Oct 12, 2011
    Keywords: Condensed Matter: Electronic Properties, etc.
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-06-26
    Description: Genome-wide copy number analyses of human cancers identified a frequent 5p13 amplification in several solid tumour types, including lung (56%), ovarian (38%), breast (32%), prostate (37%) and melanoma (32%). Here, using integrative analysis of a genomic profile of the region, we identify a Golgi protein, GOLPH3, as a candidate targeted for amplification. Gain- and loss-of-function studies in vitro and in vivo validated GOLPH3 as a potent oncogene. Physically, GOLPH3 localizes to the trans-Golgi network and interacts with components of the retromer complex, which in yeast has been linked to target of rapamycin (TOR) signalling. Mechanistically, GOLPH3 regulates cell size, enhances growth-factor-induced mTOR (also known as FRAP1) signalling in human cancer cells, and alters the response to an mTOR inhibitor in vivo. Thus, genomic and genetic, biological, functional and biochemical data in yeast and humans establishes GOLPH3 as a new oncogene that is commonly targeted for amplification in human cancer, and is capable of modulating the response to rapamycin, a cancer drug in clinical use.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2753613/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2753613/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scott, Kenneth L -- Kabbarah, Omar -- Liang, Mei-Chih -- Ivanova, Elena -- Anagnostou, Valsamo -- Wu, Joyce -- Dhakal, Sabin -- Wu, Min -- Chen, Shujuan -- Feinberg, Tamar -- Huang, Joseph -- Saci, Abdel -- Widlund, Hans R -- Fisher, David E -- Xiao, Yonghong -- Rimm, David L -- Protopopov, Alexei -- Wong, Kwok-Kin -- Chin, Lynda -- 5-T32-AR07098-31/AR/NIAMS NIH HHS/ -- P50 CA090578/CA/NCI NIH HHS/ -- P50 CA093683/CA/NCI NIH HHS/ -- P50 CA093683-06A20011/CA/NCI NIH HHS/ -- P50 CA93683/CA/NCI NIH HHS/ -- R0-1 CA 114277/CA/NCI NIH HHS/ -- R01 AG2400401/AG/NIA NIH HHS/ -- R01 CA093947/CA/NCI NIH HHS/ -- R01 CA093947-08/CA/NCI NIH HHS/ -- R01 CA114277/CA/NCI NIH HHS/ -- R01 CA114277-04/CA/NCI NIH HHS/ -- R01 CA122794/CA/NCI NIH HHS/ -- R01 CA122794-03/CA/NCI NIH HHS/ -- R01 CA93947/CA/NCI NIH HHS/ -- T32 AR007098/AR/NIAMS NIH HHS/ -- T32 AR007098-32/AR/NIAMS NIH HHS/ -- England -- Nature. 2009 Jun 25;459(7250):1085-90. doi: 10.1038/nature08109.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19553991" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibiotics, Antineoplastic/*pharmacology ; Cell Line, Tumor/drug effects ; DNA-Binding Proteins/genetics ; Female ; Gene Knockdown Techniques ; Humans ; Membrane Proteins/genetics/*metabolism ; Mice ; Mice, Nude ; Neoplasms/*physiopathology ; Protein Kinases/genetics/*metabolism ; Saccharomyces cerevisiae/genetics ; *Signal Transduction ; Sirolimus/*pharmacology ; TOR Serine-Threonine Kinases ; Transcription Factors/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-01-20
    Description: Axon guidance proteins are critical for the correct wiring of the nervous system during development. Several axon guidance cues and their family members have been well characterized. More unidentified axon guidance cues are assumed to participate in the formation of the extremely complex nervous system. We identified a secreted protein, draxin, that shares no homology with known guidance cues. Draxin inhibited or repelled neurite outgrowth from dorsal spinal cord and cortical explants in vitro. Ectopically expressed draxin inhibited growth or caused misrouting of chick spinal cord commissural axons in vivo. draxin knockout mice showed defasciculation of spinal cord commissural axons and absence of all forebrain commissures. Thus, draxin is a previously unknown chemorepulsive axon guidance molecule required for the development of spinal cord and forebrain commissures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Islam, Shahidul M -- Shinmyo, Yohei -- Okafuji, Tatsuya -- Su, Yuhong -- Naser, Iftekhar Bin -- Ahmed, Giasuddin -- Zhang, Sanbing -- Chen, Sandy -- Ohta, Kunimasa -- Kiyonari, Hiroshi -- Abe, Takaya -- Tanaka, Satomi -- Nishinakamura, Ryuichi -- Terashima, Toshio -- Kitamura, Toshio -- Tanaka, Hideaki -- New York, N.Y. -- Science. 2009 Jan 16;323(5912):388-93. doi: 10.1126/science.1165187.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Developmental Neurobiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19150847" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Axons/*physiology ; COS Cells ; Cercopithecus aethiops ; Chick Embryo ; Coculture Techniques ; Corpus Callosum/embryology/metabolism ; Electroporation ; Growth Cones/metabolism/physiology ; Intercellular Signaling Peptides and ; Proteins/chemistry/genetics/metabolism/*physiology ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Neurites/metabolism/*physiology ; Neurogenesis ; Neuroglia/metabolism ; Prosencephalon/abnormalities/*embryology/metabolism ; Recombinant Proteins/metabolism ; Spinal Cord/*embryology/metabolism ; Tissue Culture Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-02-10
    Description: Cancer immunoediting, the process by which the immune system controls tumour outgrowth and shapes tumour immunogenicity, is comprised of three phases: elimination, equilibrium and escape. Although many immune components that participate in this process are known, its underlying mechanisms remain poorly defined. A central tenet of cancer immunoediting is that T-cell recognition of tumour antigens drives the immunological destruction or sculpting of a developing cancer. However, our current understanding of tumour antigens comes largely from analyses of cancers that develop in immunocompetent hosts and thus may have already been edited. Little is known about the antigens expressed in nascent tumour cells, whether they are sufficient to induce protective antitumour immune responses or whether their expression is modulated by the immune system. Here, using massively parallel sequencing, we characterize expressed mutations in highly immunogenic methylcholanthrene-induced sarcomas derived from immunodeficient Rag2(-/-) mice that phenotypically resemble nascent primary tumour cells. Using class I prediction algorithms, we identify mutant spectrin-beta2 as a potential rejection antigen of the d42m1 sarcoma and validate this prediction by conventional antigen expression cloning and detection. We also demonstrate that cancer immunoediting of d42m1 occurs via a T-cell-dependent immunoselection process that promotes outgrowth of pre-existing tumour cell clones lacking highly antigenic mutant spectrin-beta2 and other potential strong antigens. These results demonstrate that the strong immunogenicity of an unedited tumour can be ascribed to expression of highly antigenic mutant proteins and show that outgrowth of tumour cells that lack these strong antigens via a T-cell-dependent immunoselection process represents one mechanism of cancer immunoediting.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3874809/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3874809/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matsushita, Hirokazu -- Vesely, Matthew D -- Koboldt, Daniel C -- Rickert, Charles G -- Uppaluri, Ravindra -- Magrini, Vincent J -- Arthur, Cora D -- White, J Michael -- Chen, Yee-Shiuan -- Shea, Lauren K -- Hundal, Jasreet -- Wendl, Michael C -- Demeter, Ryan -- Wylie, Todd -- Allison, James P -- Smyth, Mark J -- Old, Lloyd J -- Mardis, Elaine R -- Schreiber, Robert D -- R01 CA043059/CA/NCI NIH HHS/ -- U01 CA141541/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Feb 8;482(7385):400-4. doi: 10.1038/nature10755.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, Missouri 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22318521" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; Carrier Proteins/genetics/immunology ; DNA-Binding Proteins/deficiency/genetics ; Exome/*genetics/*immunology ; Histocompatibility Antigens Class I/immunology ; Humans ; Immunologic Surveillance/*immunology ; Male ; Methylcholanthrene ; Mice ; Microfilament Proteins/genetics/immunology ; Models, Immunological ; Neoplasms/chemically induced/*genetics/*immunology/pathology ; Reproducibility of Results ; Sarcoma/chemically induced/genetics/immunology/pathology ; T-Lymphocytes/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-21
    Description: The tumour necrosis factor (TNF) family is crucial for immune homeostasis, cell death and inflammation. These cytokines are recognized by members of the TNF receptor (TNFR) family of death receptors, including TNFR1 and TNFR2, and FAS and TNF-related apoptosis-inducing ligand (TRAIL) receptors. Death receptor signalling requires death-domain-mediated homotypic/heterotypic interactions between the receptor and its downstream adaptors, including TNFR1-associated death domain protein (TRADD) and FAS-associated death domain protein (FADD). Here we discover that death domains in several proteins, including TRADD, FADD, RIPK1 and TNFR1, were directly inactivated by NleB, an enteropathogenic Escherichia coli (EPEC) type III secretion system effector known to inhibit host nuclear factor-kappaB (NF-kappaB) signalling. NleB contained an unprecedented N-acetylglucosamine (GlcNAc) transferase activity that specifically modified a conserved arginine in these death domains (Arg 235 in the TRADD death domain). NleB GlcNAcylation (the addition of GlcNAc onto a protein side chain) of death domains blocked homotypic/heterotypic death domain interactions and assembly of the oligomeric TNFR1 complex, thereby disrupting TNF signalling in EPEC-infected cells, including NF-kappaB signalling, apoptosis and necroptosis. Type-III-delivered NleB also blocked FAS ligand and TRAIL-induced cell death by preventing formation of a FADD-mediated death-inducing signalling complex (DISC). The arginine GlcNAc transferase activity of NleB was required for bacterial colonization in the mouse model of EPEC infection. The mechanism of action of NleB represents a new model by which bacteria counteract host defences, and also a previously unappreciated post-translational modification.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Shan -- Zhang, Li -- Yao, Qing -- Li, Lin -- Dong, Na -- Rong, Jie -- Gao, Wenqing -- Ding, Xiaojun -- Sun, Liming -- Chen, Xing -- Chen, She -- Shao, Feng -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Sep 12;501(7466):242-6. doi: 10.1038/nature12436. Epub 2013 Aug 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉College of Biological Sciences, China Agricultural University, Beijing 100094, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23955153" target="_blank"〉PubMed〈/a〉
    Keywords: Acylation ; Animals ; Antigens, CD95/metabolism ; Apoptosis ; Arginine/*metabolism ; Death Domain Receptor Signaling Adaptor Proteins/metabolism ; Disease Models, Animal ; Enteropathogenic Escherichia coli/*metabolism/pathogenicity ; Escherichia coli Infections/metabolism/microbiology/pathology ; Escherichia coli Proteins/*metabolism ; Fas-Associated Death Domain Protein/chemistry/metabolism ; HeLa Cells ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Multiprotein Complexes/chemistry/metabolism ; N-Acetylglucosaminyltransferases/*metabolism ; NF-kappa B/metabolism ; Protein Biosynthesis ; Protein Structure, Tertiary ; Receptor-Interacting Protein Serine-Threonine Kinases/chemistry/metabolism ; Receptors, Tumor Necrosis Factor, Type I/chemistry/metabolism ; *Signal Transduction ; TNF Receptor-Associated Death Domain Protein/*chemistry/*metabolism ; TNF-Related Apoptosis-Inducing Ligand/metabolism ; Tumor Necrosis Factor-alpha/metabolism ; Virulence ; Virulence Factors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-10-04
    Description: The primary cilium is a microtubule-based organelle that functions in sensory and signalling pathways. Defects in ciliogenesis can lead to a group of genetic syndromes known as ciliopathies. However, the regulatory mechanisms of primary ciliogenesis in normal and cancer cells are incompletely understood. Here we demonstrate that autophagic degradation of a ciliopathy protein, OFD1 (oral-facial-digital syndrome 1), at centriolar satellites promotes primary cilium biogenesis. Autophagy is a catabolic pathway in which cytosol, damaged organelles and protein aggregates are engulfed in autophagosomes and delivered to lysosomes for destruction. We show that the population of OFD1 at the centriolar satellites is rapidly degraded by autophagy upon serum starvation. In autophagy-deficient Atg5 or Atg3 null mouse embryonic fibroblasts, OFD1 accumulates at centriolar satellites, leading to fewer and shorter primary cilia and a defective recruitment of BBS4 (Bardet-Biedl syndrome 4) to cilia. These defects are fully rescued by OFD1 partial knockdown that reduces the population of OFD1 at centriolar satellites. More strikingly, OFD1 depletion at centriolar satellites promotes cilia formation in both cycling cells and transformed breast cancer MCF7 cells that normally do not form cilia. This work reveals that removal of OFD1 by autophagy at centriolar satellites represents a general mechanism to promote ciliogenesis in mammalian cells. These findings define a newly recognized role of autophagy in organelle biogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4075283/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4075283/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tang, Zaiming -- Lin, Mary Grace -- Stowe, Timothy Richard -- Chen, She -- Zhu, Muyuan -- Stearns, Tim -- Franco, Brunella -- Zhong, Qing -- CA133228/CA/NCI NIH HHS/ -- R01 CA133228/CA/NCI NIH HHS/ -- TGM11CB3/Telethon/Italy -- England -- Nature. 2013 Oct 10;502(7470):254-7. doi: 10.1038/nature12606. Epub 2013 Oct 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24089205" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Autophagy/genetics ; Cell Line ; Centrioles/*metabolism ; Cilia/genetics/metabolism/*physiology ; Gene Knockdown Techniques ; HEK293 Cells ; Humans ; MCF-7 Cells ; Mice ; Protein Transport ; Proteins/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-06-12
    Description: Cytosolic inflammasome complexes mediated by a pattern recognition receptor (PRR) defend against pathogen infection by activating caspase 1. Pyrin, a candidate PRR, can bind to the inflammasome adaptor ASC to form a caspase 1-activating complex. Mutations in the Pyrin-encoding gene, MEFV, cause a human autoinflammatory disease known as familial Mediterranean fever. Despite important roles in immunity and disease, the physiological function of Pyrin remains unknown. Here we show that Pyrin mediates caspase 1 inflammasome activation in response to Rho-glucosylation activity of cytotoxin TcdB, a major virulence factor of Clostridium difficile, which causes most cases of nosocomial diarrhoea. The glucosyltransferase-inactive TcdB mutant loses the inflammasome-stimulating activity. Other Rho-inactivating toxins, including FIC-domain adenylyltransferases (Vibrio parahaemolyticus VopS and Histophilus somni IbpA) and Clostridium botulinum ADP-ribosylating C3 toxin, can also biochemically activate the Pyrin inflammasome in their enzymatic activity-dependent manner. These toxins all target the Rho subfamily and modify a switch-I residue. We further demonstrate that Burkholderia cenocepacia inactivates RHOA by deamidating Asn 41, also in the switch-I region, and thereby triggers Pyrin inflammasome activation, both of which require the bacterial type VI secretion system (T6SS). Loss of the Pyrin inflammasome causes elevated intra-macrophage growth of B. cenocepacia and diminished lung inflammation in mice. Thus, Pyrin functions to sense pathogen modification and inactivation of Rho GTPases, representing a new paradigm in mammalian innate immunity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Hao -- Yang, Jieling -- Gao, Wenqing -- Li, Lin -- Li, Peng -- Zhang, Li -- Gong, Yi-Nan -- Peng, Xiaolan -- Xi, Jianzhong Jeff -- Chen, She -- Wang, Fengchao -- Shao, Feng -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Sep 11;513(7517):237-41. doi: 10.1038/nature13449. Epub 2014 Jun 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] National Institute of Biological Sciences, Beijing 102206, China [2]. ; 1] National Institute of Biological Sciences, Beijing 102206, China [2] National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China [3]. ; National Institute of Biological Sciences, Beijing 102206, China. ; Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China. ; 1] National Institute of Biological Sciences, Beijing 102206, China [2] National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China [3] National Institute of Biological Sciences, Beijing, Collaborative Innovation Center for Cancer Medicine, Beijing 102206, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24919149" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins/genetics/metabolism ; Bacterial Toxins/genetics/metabolism ; Burkholderia cenocepacia/metabolism ; Caspase 1/metabolism ; Cell Line ; Clostridium difficile/metabolism ; Cytoskeletal Proteins/genetics/*metabolism ; Humans ; Immunity, Innate/genetics/*immunology ; Inflammasomes/*metabolism ; Mice ; Mice, Inbred Strains ; Mutation ; Protein Binding ; Receptors, Pattern Recognition/metabolism ; U937 Cells ; rho GTP-Binding Proteins/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-08-15
    Description: The study of cancer genes in mouse models has traditionally relied on genetically-engineered strains made via transgenesis or gene targeting in embryonic stem cells. Here we describe a new method of cancer model generation using the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) system in vivo in wild-type mice. We used hydrodynamic injection to deliver a CRISPR plasmid DNA expressing Cas9 and single guide RNAs (sgRNAs) to the liver that directly target the tumour suppressor genes Pten (ref. 5) and p53 (also known as TP53 and Trp53) (ref. 6), alone and in combination. CRISPR-mediated Pten mutation led to elevated Akt phosphorylation and lipid accumulation in hepatocytes, phenocopying the effects of deletion of the gene using Cre-LoxP technology. Simultaneous targeting of Pten and p53 induced liver tumours that mimicked those caused by Cre-loxP-mediated deletion of Pten and p53. DNA sequencing of liver and tumour tissue revealed insertion or deletion mutations of the tumour suppressor genes, including bi-allelic mutations of both Pten and p53 in tumours. Furthermore, co-injection of Cas9 plasmids harbouring sgRNAs targeting the beta-catenin gene and a single-stranded DNA oligonucleotide donor carrying activating point mutations led to the generation of hepatocytes with nuclear localization of beta-catenin. This study demonstrates the feasibility of direct mutation of tumour suppressor genes and oncogenes in the liver using the CRISPR/Cas system, which presents a new avenue for rapid development of liver cancer models and functional genomics.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4199937/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4199937/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xue, Wen -- Chen, Sidi -- Yin, Hao -- Tammela, Tuomas -- Papagiannakopoulos, Thales -- Joshi, Nikhil S -- Cai, Wenxin -- Yang, Gillian -- Bronson, Roderick -- Crowley, Denise G -- Zhang, Feng -- Anderson, Daniel G -- Sharp, Phillip A -- Jacks, Tyler -- 1K99CA169512/CA/NCI NIH HHS/ -- 2-P01-CA42063/CA/NCI NIH HHS/ -- 5-U54-CA151884-04/CA/NCI NIH HHS/ -- DP1 MH100706/MH/NIMH NIH HHS/ -- K99 CA169512/CA/NCI NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- P30-CA14051/CA/NCI NIH HHS/ -- R00 CA169512/CA/NCI NIH HHS/ -- R01 DK097768/DK/NIDDK NIH HHS/ -- R01-CA115527/CA/NCI NIH HHS/ -- R01-CA132091/CA/NCI NIH HHS/ -- R01-CA133404/CA/NCI NIH HHS/ -- R01-EB000244/EB/NIBIB NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Oct 16;514(7522):380-4. doi: 10.1038/nature13589. Epub 2014 Aug 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [2]. ; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA. ; Tufts University and Harvard Medical School, Boston, Massachusetts 02115, USA. ; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA. ; 1] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [2] Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [3] Harvard-MIT Division of Health Sciences &Technology, Cambridge, Massachusetts 02139, USA [4] Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA. ; 1] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA. ; 1] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [3] Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119044" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *CRISPR-Cas Systems ; Cell Transformation, Neoplastic/genetics ; Clustered Regularly Interspaced Short Palindromic Repeats/genetics ; Female ; *Genes, Tumor Suppressor ; Genes, p53/genetics ; Genetic Engineering/*methods ; Hepatocytes/metabolism/pathology ; Lipid Metabolism ; Liver/cytology/*metabolism/pathology ; Liver Neoplasms/genetics/metabolism/pathology ; Mice ; Molecular Sequence Data ; Mutagenesis/*genetics ; Mutation/*genetics ; Oncogenes/*genetics ; PTEN Phosphohydrolase/genetics ; Phosphorylation ; Proto-Oncogene Proteins c-akt/metabolism ; beta Catenin/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-07-09
    Description: Mechanical forces are central to developmental, physiological and pathological processes. However, limited understanding of force transmission within sub-cellular structures is a major obstacle to unravelling molecular mechanisms. Here we describe the development of a calibrated biosensor that measures forces across specific proteins in cells with piconewton (pN) sensitivity, as demonstrated by single molecule fluorescence force spectroscopy. The method is applied to vinculin, a protein that connects integrins to actin filaments and whose recruitment to focal adhesions (FAs) is force-dependent. We show that tension across vinculin in stable FAs is approximately 2.5 pN and that vinculin recruitment to FAs and force transmission across vinculin are regulated separately. Highest tension across vinculin is associated with adhesion assembly and enlargement. Conversely, vinculin is under low force in disassembling or sliding FAs at the trailing edge of migrating cells. Furthermore, vinculin is required for stabilizing adhesions under force. Together, these data reveal that FA stabilization under force requires both vinculin recruitment and force transmission, and that, surprisingly, these processes can be controlled independently.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901888/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901888/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grashoff, Carsten -- Hoffman, Brenton D -- Brenner, Michael D -- Zhou, Ruobo -- Parsons, Maddy -- Yang, Michael T -- McLean, Mark A -- Sligar, Stephen G -- Chen, Christopher S -- Ha, Taekjip -- Schwartz, Martin A -- 5T32-HL007284/HL/NHLBI NIH HHS/ -- R01 GM033775/GM/NIGMS NIH HHS/ -- R21 RR025341/RR/NCRR NIH HHS/ -- U54 GM064346/GM/NIGMS NIH HHS/ -- U54 GM064346-099039/GM/NIGMS NIH HHS/ -- U54 GM64346/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Jul 8;466(7303):263-6. doi: 10.1038/nature09198.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20613844" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biosensing Techniques ; Calibration ; Cattle ; Cell Line ; Cell Movement/*physiology ; Fluorescent Dyes ; Focal Adhesions/*metabolism ; Humans ; Mice ; Microscopy, Confocal ; Movement ; Optical Tweezers ; Spectrometry, Fluorescence ; *Stress, Mechanical ; Vinculin/chemistry/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...