ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-12-14
    Description: Fragile X syndrome (FXS) is a multi-organ disease that leads to mental retardation, macro-orchidism in males and premature ovarian insufficiency in female carriers. FXS is also a prominent monogenic disease associated with autism spectrum disorders (ASDs). FXS is typically caused by the loss of fragile X mental retardation 1 (FMR1) expression, which codes for the RNA-binding protein FMRP. Here we report the discovery of distinct RNA-recognition elements that correspond to the two independent RNA-binding domains of FMRP, in addition to the binding sites within the messenger RNA targets for wild-type and I304N mutant FMRP isoforms and the FMRP paralogues FXR1P and FXR2P (also known as FXR1 and FXR2). RNA-recognition-element frequency, ratio and distribution determine target mRNA association with FMRP. Among highly enriched targets, we identify many genes involved in ASD and show that FMRP affects their protein levels in human cell culture, mouse ovaries and human brain. Notably, we discovered that these targets are also dysregulated in Fmr1(-/-) mouse ovaries showing signs of premature follicular overdevelopment. These results indicate that FMRP targets share signalling pathways across different cellular contexts. As the importance of signalling pathways in both FXS and ASD is becoming increasingly apparent, our results provide a ranked list of genes as basis for the pursuit of new therapeutic targets for these neurological disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3528815/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3528815/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ascano, Manuel Jr -- Mukherjee, Neelanjan -- Bandaru, Pradeep -- Miller, Jason B -- Nusbaum, Jeffrey D -- Corcoran, David L -- Langlois, Christine -- Munschauer, Mathias -- Dewell, Scott -- Hafner, Markus -- Williams, Zev -- Ohler, Uwe -- Tuschl, Thomas -- HD068546/HD/NICHD NIH HHS/ -- K08 HD068546/HD/NICHD NIH HHS/ -- R01 GM104962/GM/NIGMS NIH HHS/ -- R01 MH080442/MH/NIMH NIH HHS/ -- UL1RR024143/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Dec 20;492(7429):382-6. doi: 10.1038/nature11737. Epub 2012 Dec 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Laboratory of RNA Molecular Biology, The Rockefeller University, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23235829" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Brain/metabolism ; Child ; Child Development Disorders, Pervasive/genetics/metabolism ; Cross-Linking Reagents ; Female ; Fragile X Mental Retardation Protein/*genetics/*metabolism ; Gene Expression Regulation/*genetics ; HEK293 Cells ; Humans ; Immunoprecipitation ; Mice ; Molecular Sequence Data ; Multigene Family ; Mutation ; Ovary/metabolism/pathology ; Protein Biosynthesis/*genetics ; RNA, Messenger/*genetics/metabolism ; Regulatory Sequences, Ribonucleic Acid/*genetics ; Response Elements/genetics ; Signal Transduction ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...