ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 43 (1994), S. 801-809 
    ISSN: 0006-3592
    Keywords: 3T3 Fibroblast ; chicken hepatocytes ; cell-polymer interactions ; N-acetylglucosamine derivatized polystyrene ; hepatocytes ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: 3T3 fibroblasts and primary chicken hepatocytes were cultured on derivatized polystyrene surfaces to examine the effect of cell-specific ligands on cellular morphology and growth. Surfaces were prepared by derivatizing chloromethylated polystyrene with N-acetylglucosamine (GlcNAc; recognized by the chicken asialoglycoprotein receptor) and adenosine (not recognized by adult hepatocytes). These surfaces were compared with tissue culture polystyrene (TCPS), acid-cleaned glass, and the unmodified chloromethylated polystyrene. The spreading, cytoskeletal structure and growth of the fibroblasts following attachment to these surfaces were examined. The extent of attachment, total protein levels, and DNA contents for surfaces-attached chicken hepatocytes were also measured. Fibroblast spreading was greatest on polymer surfaces derivatized with GlcNAc, whereas cytoskeletal structure and growth rate were independent of surface chemistry. Although chicken hepatocytes attached most efficiently to the GlcNAc derivatized polymer, the total protein and DNA levels of the surface-attached cells were not affected. In anticipation of the application of these polymers for cell culture and hybrid artificial organ design, the GlcNAc-derivatized polystryrene was fabricated into porous microcarriers. Fibroblasts grew avidly on the microcarriers, whereas chicken hepactocytes adhered well to the formed large aggregates arounds the microcarriers.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 35 (1988), S. 755-774 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A new method to prepare polyanhydride microspheres, namely via solvent removal, is presented. Polyanhydrides composed of the following diacids were used: sebacic acid (SA), bis(p-carboxy-phenoxy) propane (CPP), and dodecanedioic acid (DD). Polymers were characterized by infrared (IR) spectroscopy, X-ray diffraction, viscosity, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Drug release was affected by polymer composition, physical properties of the microspheres, and type of drug. The potential for injectable microspheres (size range 1-300 μm) made of copolymer (CPP-SA 50:50), as biodegradable polymer carriers for the controlled release of insulin in treating diabetes mellitus, was assessed. Both 5% and 10% w/w insulin-loaded microspheres were prepared. The 10% loaded microspheres produced the best clinical response, demonstrating five days of urine glucose control and four days of serum glucose control in diabetic rats.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...