ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 106 (2015): 9-16, doi:10.1016/j.dsr.2015.09.006.
    Description: The potential bioaccumulation of 137Cs in marine food webs off Japan became a concern following the release of radioactive contaminants from the damaged Fukushima nuclear power plant into the coastal ocean. Previous studies suggest that 137Cs activities increase with trophic level in pelagic food webs, however, the bioaccumulation of 137Cs from seawater to primary producers, to zooplankton has not been evaluated in the field. Since phytoplankton are frequently the largest component of SPM (suspended particulate matter) we used SPM concentrations and particle-associated 137Cs to understand bioaccumulation of 137Cs in through trophic pathways in the field. We determined particle-associated 137Cs for samples collected at 20 m depth from six stations off Japan three months after the initial release from the Fukushima nuclear power plant. At 20 m SPM ranged from 0.65 to 1.60 mg L-1 and rapidly declined with depth. The ratios of particulate organic carbon to chlorophyll a suggested that phytoplankton comprised much of the SPM in these samples. 137Cs activities on particles accounted for on average 0.04% of the total 137Cs in seawater samples, and measured concentration factors of 137Cs on small suspended particles were comparatively low (~102). However, when 137Cs in crustacean zooplankton was derived based only on modeling dietary 137Cs uptake, we found predicted and measured 137Cs concentrations in good agreement. We therefore postulate the possibility that the dietary route of 137Cs bioaccumulation (i.e., phytoplankton ingestion) could be largely responsible for the measured levels in the copepod-dominated (%) zooplankton assemblages in Japanese coastal waters. Finally, our data did not support the notion that zooplankton grazing on phytoplankton results in a biomagnification of 137Cs.
    Description: This project was funded by the Gordon and Betty Moore Foundation through Grants GBMF3007 and GBMF 3423, and JSPS KAKENHI Grant-in-Aid for Scientific Research on Innovative Areas Grant Number 24110005.
    Description: 2016-09-25
    Keywords: Fukushima ; Cesium ; Trophic transfer ; Phytoplankton ; Zooplankton
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Roca-Marti, M., Benitez-Nelson, C. R., Umhau, B. P., Wyatt, A. M., Clevenger, S. J., Pike, S., Horner, T. J., Estapa, M. L., Resplandy, L., & Buesseler, K. O. Concentrations, ratios, and sinking fluxes of major bioelements at Ocean Station Papa. Elementa: Science of the Anthropocene, 9(1), (2021): 00166, https://doi.org/10.1525/elementa.2020.00166.
    Description: Fluxes of major bioelements associated with sinking particles were quantified in late summer 2018 as part of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) field campaign near Ocean Station Papa in the subarctic northeast Pacific. The thorium-234 method was used in conjunction with size-fractionated (1–5, 5–51, and 〉51 μm) concentrations of particulate nitrogen (PN), total particulate phosphorus (TPP), biogenic silica (bSi), and particulate inorganic carbon (PIC) collected using large volume filtration via in situ pumps. We build upon recent work quantifying POC fluxes during EXPORTS. Similar remineralization length scales were observed for both POC and PN across all particle size classes from depths of 50–500 m. Unlike bSi and PIC, the soft tissue–associated POC, PN, and TPP fluxes strongly attenuated from 50 m to the base of the euphotic zone (approximately 120 m). Cruise-average thorium-234-derived fluxes (mmol m–2 d–1) at 120 m were 1.7 ± 0.6 for POC, 0.22 ± 0.07 for PN, 0.019 ± 0.007 for TPP, 0.69 ± 0.26 for bSi, and 0.055 ± 0.022 for PIC. These bioelement fluxes were similar to previous observations at this site, with the exception of PIC, which was 1 to 2 orders of magnitude lower. Transfer efficiencies within the upper twilight zone (flux 220 m/flux 120 m) were highest for PIC (84%) and bSi (79%), followed by POC (61%), PN (58%), and TPP (49%). These differences indicate preferential remineralization of TPP relative to POC or PN and larger losses of soft tissue relative to biominerals in sinking particles below the euphotic zone. Comprehensive characterization of the particulate bioelement fluxes obtained here will support future efforts linking phytoplankton community composition and food-web dynamics to the composition, magnitude, and attenuation of material that sinks to deeper waters.
    Description: The authors would like to acknowledge support from the National Aeronautics and Space Administration as part of the EXport Processes in the Ocean from RemoTe Sensing program awards 80NSSC17K0555 and 80NSSC17K0662. They also acknowledge the funding from the Woods Hole Oceanographic Institution’s Ocean Twilight Zone study for MRM and KOB, the National Science Foundation Graduate Research Fellowship Program for AMW, and the Ocean Frontier Institute for MRM.
    Keywords: Biological pump ; Bioelements ; Particulate fluxes ; Transfer efficiency ; Size-fractionated particles ; EXPORTS
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 114 (2017): 11092-11096, doi:10.1073/pnas.1708659114.
    Description: There are 440 operational nuclear reactors in the world, with approximately half situated along the coastline. This includes the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), which experienced multiple reactor meltdowns in March 2011 followed by the release of radioactivity to the marine environment. While surface inputs to the ocean via atmospheric deposition and rivers are usually well monitored after a nuclear accident, no study has focused on subterranean pathways. During our study period, we found the highest cesium-137 (137Cs) levels (up to 23,000 Bq m-3) outside of the FDNPP site not in the ocean, rivers or potable groundwater, but in groundwater beneath sand beaches over tens of kilometers away from the FDNPP. Here, we present evidence of a previously unknown, ongoing source of Fukushima-derived 137Cs to the coastal ocean. We postulate that these beach sands were contaminated in 2011 through wave and tide driven exchange and sorption of highly radioactive Cs from seawater. Subsequent desorption of 137Cs and fluid exchange from the beach sands was quantified using naturally occurring radium isotopes. This estimated ocean 137Cs source (0.6 TBq y-1) is of similar magnitude as the ongoing releases of 137Cs from the FDNPP site for 2013-2016, as well as the input of Fukushima-derived dissolved 137Cs via rivers. Though this ongoing source is not at present a public health issue for Japan, the release of Cs of this type and scale needs to be considered in NPP monitoring and scenarios involving future accidents.
    Description: V. Sanial was supported by a Postdoctoral Scholarship from the Center for Marine and Environmental Radioactivity (CMER). Funding for this work was provided by the Gordon and Betty Moore Foundation, the Deerbrook Charitable Trust, as well as the EC 7th Framework project COMET-FRAME (COordination and iMplementation of a pan-Europe instrumenT for radioecology) and KAKENHI (24110008).
    Keywords: Fukushima Dai-ichi Nuclear Power Plant accident ; Cesium ; Submarine groundwater discharge
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science of The Total Environment 621 (2018): 1185-1198, doi:10.1016/j.scitotenv.2017.10.109.
    Description: We made an assessment of the levels of radionuclides in the ocean waters, seafloor and groundwater at Bikini and Enewetak Atolls where the US conducted nuclear weapons tests in the 1940's and 50's. This included the first estimates of submarine groundwater discharge (SGD) derived from radium isotopes that can be used here to calculate radionuclide fluxes in to the lagoon waters. While there is significant variability between sites and sample types, levels of plutonium (239,240Pu) remain several orders of magnitude higher in lagoon seawater and sediments than what is found in rest of the world's oceans. In contrast, levels of cesium-137 (137Cs) while relatively elevated in brackish groundwater are only slightly higher in the lagoon water relative to North Pacific surface waters. Of special interest was the Runit dome, a nuclear waste repository created in the 1970's within the Enewetak Atoll. Low seawater ratios of 240Pu/239Pu suggest that this area is the source of about half of the Pu in the Enewetak lagoon water column, yet radium isotopes suggest that SGD from below the dome is not a significant Pu source. SGD fluxes of Pu and Cs at Bikini were also relatively low. Thus radioactivity associated with seafloor sediments remains the largest source and long term repository for radioactive contamination. Overall, Bikini and Enewetak Atolls are an ongoing source of Pu and Cs to the North Pacific, but at annual rates that are orders of magnitude smaller than delivered via close-in fallout to the same area.
    Description: Finally, none of this would have been possible without the generous financial support from the Dalio Explore Fund (WHOI #25531513) for the vessel and our post cruise analyses that together resulted in this unique and successful research program.
    Keywords: Marshall Islands ; Runit dome ; Plutonium ; Cesium ; Radium ; Nuclear weapons tests
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Annual Review of Marine Science 9 (2017): 173-203, doi:10.1146/annurev-marine-010816-060733.
    Description: The events that followed the Tohoku earthquake and tsunami on March 11, 2011, included the loss of power and overheating at the Fukushima Daiichi nuclear power plants, which led to extensive releases of radioactive gases, volatiles, and liquids, particularly to the coastal ocean. The fate of these radionuclides depends in large part on their oceanic geochemistry, physical processes, and biological uptake. Whereas radioactivity on land can be resampled and its distribution mapped, releases to the marine environment are harder to characterize owing to variability in ocean currents and the general challenges of sampling at sea. Five years later, it is appropriate to review what happened in terms of the sources, transport, and fate of these radionuclides in the ocean. In addition to the oceanic behavior of these contaminants, this review considers the potential health effects and societal impacts.
    Description: K.B. was supported in part by the Gordon and Betty Moore Foundation and the Deerbrook Charitable Trust. P.M. was supported in part by the Generalitat de Catalunya through MERS (grant 2014 SGR 1356), the European Commission 7th Framework COMET-FRAME project (grant agreement 604974), and the Ministerio de Economía y Competitividad of Spain (project CTM2011-15152-E). S.C. was supported in part by the French program Investissement d'Avenir run by the National Research Agency (AMORAD project, grant ANR-11-RSNR-0002). D.O. was supported in part by the Center for Environmental Radioactivity (NFR Centers of Excellence grant 223268/F50). J.N.S. was supported in part by the Marine Environmental Observation, Prediction, and Response Network.
    Keywords: Cesium ; Caesium ; North Pacific ; Radioactivity ; Japan
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Buesseler, K. O., Benitez-Nelson, C. R., Roca-Marti, M., Wyatt, A. M., Resplandy, L., Clevenger, S. J., Drysdale, J. A., Estapa, M. L., Pike, S., & Umhau, B. P. High-resolution spatial and temporal measurements of particulate organic carbon flux using thorium-234 in the northeast Pacific Ocean during the EXport processes in the ocean from RemoTe sensing field campaign. Elementa: Science of the Anthropocene, 8(1), (2020): 030, https://doi.org/10.1525/elementa.030.
    Description: The EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) program of National Aeronautics and Space Administration focuses on linking remotely sensed properties from satellites to the mechanisms that control the transfer of carbon from surface waters to depth. Here, the naturally occurring radionuclide thorium-234 was used as a tracer of sinking particle flux. More than 950 234Th measurements were made during August–September 2018 at Ocean Station Papa in the northeast Pacific Ocean. High-resolution vertical sampling enabled observations of the spatial and temporal evolution of particle flux in Lagrangian fashion. Thorium-234 profiles were remarkably consistent, with steady-state (SS) 234Th fluxes reaching 1,450 ± 300 dpm m−2 d−1 at 100 m. Nonetheless, 234Th increased by 6%–10% in the upper 60 m during the cruise, leading to consideration of a non-steady-state (NSS) model and/or horizontal transport, with NSS having the largest impact by decreasing SS 234Th fluxes by 30%. Below 100 m, NSS and SS models overlapped. Particulate organic carbon (POC)/234Th ratios decreased with depth in small (1–5 μm) and mid-sized (5–51 μm) particles, while large particle (〉51 μm) ratios remained relatively constant, likely influenced by swimmer contamination. Using an average SS and NSS 234Th flux and the POC/234Th ratio of mid-sized particles, we determined a best estimate of POC flux. Maximum POC flux was 5.5 ± 1.7 mmol C m−2 d−1 at 50 m, decreasing by 70% at the base of the primary production zone (117 m). These results support earlier studies that this site is characterized by a modest biological carbon pump, with an export efficiency of 13% ± 5% (POC flux/net primary production at 120 m) and 39% flux attenuation in the subsequent 100 m (POC flux 220 m/POC flux 120m). This work sets the foundation for understanding controls on the biological carbon pump during this EXPORTS campaign.
    Description: The authors would like to acknowledge support from the National Aeronautics and Space Administration (NASA) as part of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) program awards 80NSSC17K0555 and 80NSSC17K0662; the Woods Hole Oceanographic Institution’s Ocean Twilight Zone study for KOB and MRM, and the National Science Foundation Graduate Research Fellowship Program (NSF-GRFP) for funding and support of AW.
    Keywords: Thorium-234 ; Ocean Station Papa ; Particulate organic carbon flux ; EXPORTS ; Biological carbon pump
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...