ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: The Piano di Pezza fault (PPF) is the north-westernmost segment of the 〉20 km long Ovindoli-Pezza active normal fault-system (central Italy). Although existing paleoseismic data document high vertical Holocene slip rates (~1 mm/yr) and a remarkable seismogenic potential of this fault, its subsurface setting and Pleistocene cumulative displacement are still unknown. We investigated the shallow subsurface of a key section of the PPF using seismic and electrical resistivity tomography coupled with time-domain electromagnetic measurements (TDEM). We provide 2-D Vp and resistivity images showing details of the fault structure and the geometry of the shallow basin infill down to 35-40 m depth. We can estimate the dip and the Holocene vertical displacement of the master fault. TDEM measurements in the fault hangingwall indicate that the pre-Quaternary carbonate basement may be found at ~90-100 m depth.
    Description: Published
    Description: Fucino (AQ)
    Description: 2T. Tettonica attiva
    Description: 7A. Geofisica di esplorazione
    Description: open
    Keywords: Central Apennines ; Seismic refraction ; electrical resistivity tomography ; time-domain electromagnetic measurement ; active fault ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We present preliminary results from a multidisciplinary geophysical approach applied to the imaging of the threedimensional architecture of the Middle Aterno basin, close to the epicentral area of the 2009 L’Aquila earthquake (central Italy). We collected several time domain electromagnetic soundings (TDEM) coupled with seismic noise measurements focusing on the characterization of the bedrock/infill interface. Our preliminary results agree with existing geophysical data collected in the area, and show that the southeastern portion of the basin is characterized by a deepening of the Mesozoic-Tertiary bedrock down to a depth of more than 450 m. We found that a joint use of electromagnetic and seismic methods significantly contributes in obtaining new insights on the 3D geometry of the Middle Aterno basin. Moreover, we believe that our combined approach based on TDEM and noise measurements can be adopted to investigate similar geological settings elsewhere.
    Description: Published
    Description: Pescina, Fucino Basin, Italy
    Description: 2T. Tettonica attiva
    Description: 7A. Geofisica di esplorazione
    Description: open
    Keywords: Central Apennines ; extensional basin ; TDEM ; ambient noise ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-09-13
    Description: Among the geologic data, trenching records of paleoearthquakes represent an important input for the development of seismic hazard evaluations and, specifically, for the characterization of fault rupture behavior in time. Based on the available paleoseismological trenching data in the Central Apennines we have compiled a new database of surface faulting earthquakes for 10 faults. The compilation contains 109 surface faulting events, occurred in the past ~28 kyr. Events younger than 7 kyr (59 dated events) are much better constrained and, therefore, are the basis for most of the analyses. Through a quantitative multistep method, we integrate paleoseismic trench data and treat them statistically, providing relevant improvement needed for trenching-based seismic hazard evaluation. Indeed, the combined analysis of trenching data from multiple sites on the same fault led to a reduction of the approximations and uncertainties in the rupture history of individual faults. The procedure was also applied on specific fault systems and indicated that the single faults may have occasionally ruptured simultaneously, or close in time, in the past. The whole set of age ranges was also statistically analyzed to produce regional earthquake scenarios for a period much longer than the millennial historical record. The built scenarios for the last 7 kyr define a regional mean inter event time (IET) of 230-240 yr, comparable with the average recurrence time of about 200 yr, considering the number of events in time. We also identify the possible occurrence of earthquake storms, i.e., concentration of surface faulting earthquakes in the region within time periods of 200 yr, suggesting a variability in time of the seismic behavior of the faults, with alternation of peaks of activity with more “quiet” periods. Even though the paleoseismic data from the Apennines contains uncertainties, the results appear quite stable and promising for future applications in earthquake-hazard assessment.
    Description: Published
    Description: 229016
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Keywords: Paleoseismology ; Statistical modeling ; Surface rupture scenarios ; Regional earthquake recurrence ; Earthquake storms ; Central Apennines ; 04.04. Geology ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-06-13
    Description: Three 2-D Deep Electrical Resistivity Tomography (ERT) transects, up to 6.36 km long, were obtained across the Paganica-San Demetrio Basin, bounded by the 2009 L’Aquila Mw 6.1 normal-faulting earthquake causative fault (central Italy). The investigations allowed defining for the first time the shallow subsurface basin structure. The resistivity images, and their geological interpretation, showa dissected Mesozoic-Tertiary substratum buried under continental infill of mainly Quaternary age due to the long-term activity of the Paganica-San Demetrio normal faults system (PSDFS), ruling the most recent deformational phase. Our results indicate that the basin bottom deepens up to 600 m moving to the south, with the continental infill largely exceeding the known thickness of the Quaternary sequence. The causes of this increasing thickness can be: (1) the onset of the continental deposition in the southern sector took place before the Quaternary, (2) there was an early stage of the basin development driven by different fault systems that produced a depocentre in the southern sector not related to the present-day basin shape, or (3) the fault system slip rate in the southern sector was faster than in the northern sector. We were able to gain sights into the long-term PSDFS behaviour and evolution, by comparing throw rates at different timescales and discriminating the splays that lead deformation. Some fault splays exhibit large cumulative throws (〉300 m) in coincidence with large displacement of the continental deposits sequence (〉100 m), thus testifying a general persistence in time of their activity as leading splays of the fault system. We evaluate the long-term (3–2.5Myr) cumulative and Quaternary throw rates of most of the leading splays to be 0.08–0.17 mm yr−1, indicating a substantial stability of the faults activity. Among them, an individual leading fault splay extends from Paganica to San Demetrio ne’ Vestini as a result of a post-Early Pleistocene linkage of two smaller splays. This 15 km long fault splay can explain the Holocene surface ruptures observed to be larger than those occurred during the 2009 L’Aquila earthquake, such as revealed by palaeoseismological investigations. Finally, the architecture of the basin at depth suggests that the PSDFS can also rupture a longer structure at the surface, allowing earthquakes larger than M 6.5, besides rupturing only small sections, as it occurred in 2009.
    Description: Published
    Description: 967–982
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: JCR Journal
    Keywords: electrical properties ; tectonics and landscape evolution ; neotectonics ; fractures and faults ; 04.02. Exploration geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-06-05
    Description: Since the beginning of the ongoing Amatrice seismic sequence on August 24, 2016, initiated by a Mw 6.0 normal faulting earthquake, the EMERGEO Working Group (an INGV team devoted to earthquake aftermath geological survey) investigated coseismic effects on the natural environment. Up to now, we surveyed about 750 km2 and collected more than 3200 geological observations including differently oriented tectonic fractures together with intermediate- to small- sized landslides. The most impressive coseismic evidence was found along the known active Mt. Vettore fault system, where surface ruptures with clear vertical/horizontal offset were observed for more than 5 km, while unclear and discontinuous coseismic features were recorded along the Laga Mts. Fault systems.
    Description: Published
    Description: 1T. Deformazione crostale attiva
    Description: 4T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Keywords: coseismic effects ; surface ruptures ; fractures and faults ; amatrice earthquake ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...