ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-12-22
    Description: Fos and Jun form a heterodimeric complex that associates with the nucleotide sequence motif known as the AP-1 binding site. Although this complex has been proposed to function as a transcriptional regulator in neurons, no specific target gene has yet been identified. Proenkephalin mRNA increased in the hippocampus during seizure just after an increase in c-fos and c-jun expression was detected. Fos-Jun complexes bound specifically to a regulatory sequence in the 5' control region of the proenkephalin gene. Furthermore, c-fos and c-jun stimulated transcription from this control region synergistically in transactivation assays. These data suggest that the proenkephalin gene may be a physiological target for Fos and Jun in the hippocampus and indicate that these proto-oncogene transcription factors may play a role in neuronal responses to stimulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sonnenberg, J L -- Rauscher, F J 3rd -- Morgan, J I -- Curran, T -- New York, N.Y. -- Science. 1989 Dec 22;246(4937):1622-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Oncology, Molecular Biology, Roche Research Center, Nutley, NJ 07110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2512642" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Brain/*metabolism ; Cell Line ; DNA-Binding Proteins/*genetics/metabolism ; Enhancer Elements, Genetic ; Enkephalins/*genetics ; *Gene Expression Regulation ; *Genes ; Hippocampus/metabolism ; Mice ; Molecular Sequence Data ; Promoter Regions, Genetic ; Protein Precursors/*genetics ; Protein-Tyrosine Kinases/*genetics ; Proto-Oncogene Proteins/*genetics/metabolism ; Proto-Oncogene Proteins c-fos ; Proto-Oncogene Proteins c-jun ; *Proto-Oncogenes ; RNA, Messenger/genetics ; Teratoma ; Transcription Factors/*genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1991-12-20
    Description: Transient activation of the interleukin-2 (IL-2) gene after antigen recognition by T lymphocytes is crucial for subsequent T cell proliferation and differentiation. Several IL-2 gene regulatory elements and binding factors necessary for activation of the IL-2 gene have been defined. However, little is known about negative regulation of IL-2 expression, which is likely to be important in the rapid shut-off of IL-2 transcription. A nucleotide sequence element (NRE-A) that negatively regulates IL-2 expression has been identified within the IL-2 gene. T cell nuclear extracts contained an NRE-A binding activity. A complementary DNA was isolated that encodes a zinc finger-containing protein that suppressed IL-2 gene expression. The observation of negative regulation of the immunoglobulin heavy chain gene enhancer by an element similar to NRE-A suggests that related proteins may regulate multiple immune response genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Williams, T M -- Moolten, D -- Burlein, J -- Romano, J -- Bhaerman, R -- Godillot, A -- Mellon, M -- Rauscher, F J 3rd -- Kant, J A -- AI23879/AI/NIAID NIH HHS/ -- CA23413/CA/NCI NIH HHS/ -- CA54428/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1991 Dec 20;254(5039):1791-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, School of Medicine, University of New Mexico, Albuquerque 87131.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1840704" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; DNA Probes ; *Enhancer Elements, Genetic ; *Gene Expression Regulation ; *Genes, Immunoglobulin ; Humans ; Immunoglobulin Heavy Chains/*genetics ; Interleukin-2/*genetics ; Mice ; Molecular Sequence Data ; Oligodeoxyribonucleotides ; Regulatory Sequences, Nucleic Acid ; Restriction Mapping ; T-Lymphocytes/*immunology ; *Transcription, Genetic ; Zinc Fingers/*genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1991-10-07
    Description: The wt1 gene, a putative tumor suppressor gene located at the Wilms tumor (WT) locus on chromosome 11p13, encodes a zinc finger-containing protein that binds to the same DNA sequence as EGR-1, a mitogen-inducible immediate-early gene product that activates transcription. The transcriptional regulatory potential of WT1 has not been demonstrated. In transient transfection assays, the WT1 protein functioned as a repressor of transcription when bound to the EGR-1 site. The repression function was mapped to the glutamine- and proline-rich NH2-terminus of WT1; fusion of this domain to the zinc finger region of EGR-1 converted EGR-1 into a transcriptional repressor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Madden, S L -- Cook, D M -- Morris, J F -- Gashler, A -- Sukhatme, V P -- Rauscher, F J 3rd -- CA-0917-15/CA/NCI NIH HHS/ -- CA-23413/CA/NCI NIH HHS/ -- CA-52009/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1991 Sep 27;253(5027):1550-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wistar Institute of Anatomy and Biology, Philadelphia, PA 19104.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1654597" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cell Line ; Chromosomes, Human, Pair 11 ; DNA/genetics ; DNA-Binding Proteins/*genetics ; Gene Expression Regulation ; *Genes, Tumor Suppressor ; Humans ; Kidney Neoplasms/*genetics ; Molecular Sequence Data ; Repressor Proteins/*genetics ; *Transcription, Genetic ; Wilms Tumor/*genetics ; Zinc Fingers/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1988-03-04
    Description: The Fos protein complex and several Fos-related antigens bind directly or indirectly to a common sequence element that is similar to the consensus binding site for HeLa cell activator protein 1 (AP-1). This element is present in a negative regulatory sequence in the differentiation-sensitive adipocyte gene, aP2; in a transcriptional enhancer for the Gibbon ape leukemia virus; and in a region of the human immunodeficiency virus (HIV) long terminal repeat partially characterized as a negative regulatory element. The protein level and binding activity of Fos and Fos-related antigens increase rapidly after calcium ionophore treatment of a CD4+ human lymphoblast cell line, H9. These data suggest that several proteins may associate with the AP-1 binding site. Moreover, temporally regulated control of the level of each protein could represent a mechanism for modulation of these putative mediators of gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Franza, B R Jr -- Rauscher, F J 3rd -- Josephs, S F -- Curran, T -- New York, N.Y. -- Science. 1988 Mar 4;239(4844):1150-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, NY 11724.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2964084" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Calcimycin/pharmacology ; Cell Line ; Chemical Precipitation ; Dna ; Electrophoresis, Polyacrylamide Gel ; Enhancer Elements, Genetic ; HIV/genetics ; Humans ; Immunoassay ; Immunosorbent Techniques ; Molecular Sequence Data ; Proto-Oncogene Proteins/analysis/genetics/immunology/*metabolism ; Proto-Oncogene Proteins c-fos ; Proto-Oncogenes ; Regulatory Sequences, Nucleic Acid ; Repetitive Sequences, Nucleic Acid ; T-Lymphocytes, Helper-Inducer/cytology/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...