ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: An efficient method for computing the minimum distance and predicting collisions between moving objects is presented. This problem has been incorporated in the framework of an in-line motion planning algorithm to satisfy collision avoidance between a robot and moving objects modeled as convex polyhedra. In the beginning the deterministic problem, where the information about the objects is assumed to be certain is examined. If instead of the Euclidean norm, L(sub 1) or L(sub infinity) norms are used to represent distance, the problem becomes a linear programming problem. The stochastic problem is formulated, where the uncertainty is induced by sensing and the unknown dynamics of the moving obstacles. Two problems are considered: (1) filtering of the minimum distance between the robot and the moving object, at the present time; and (2) prediction of the minimum distance in the future, in order to predict possible collisions with the moving obstacles and estimate the collision time.
    Keywords: CYBERNETICS
    Type: NASA-CR-192737 , NAS 1.26:192737 , RPI-CIRSSE-25
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: An optimal control formulation of the problem of collision avoidance of mobile robots in environments containing moving obstacles is presented. Collision avoidance is guaranteed if the minimum distance between the robot and the objects is nonzero. A nominal trajectory is assumed to be known from off-line planning. The main idea is to change the velocity along the nominal trajectory so that collisions are avoided. Furthermore, time consistency with the nominal plan is desirable. A numerical solution of the optimization problem is obtained. Simulation results verify the value of the proposed strategy.
    Keywords: CYBERNETICS
    Type: NASA-CR-191868 , NAS 1.26:191868 , RPI-CIRSSE-83
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-14
    Description: An efficient method for computing the minimum distance and predicting collisions between moving objects is presented. This problem is incorporated into the framework of an in-line motion-planning algorithm to satisfy collision avoidance between a robot and moving objects modeled as convex polyhedra. In the beginning, the deterministic problem where the information about the objects is assumed to be certain is examined. L(1) or L(infinity) norms are used to represent distance and the problem becomes a linear programming problem. The stochastic problem is formulated where the uncertainty is induced by sensing and the unknown dynamics of the moving obstacles. Two problems are considered: First, filtering of the distance between the robot and the moving object at the present time. Second, prediction of the minimum distance in the future in order to predict the collision time.
    Keywords: CYBERNETICS
    Type: Automatica (ISSN 0005-1098); 28; 2 Ma
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-28
    Description: A formulation that makes possible the integration of collision prediction and avoidance stages for mobile robots moving in general terrains containing moving obstacles is presented. A dynamic model of the mobile robot and the dynamic constraints are derived. Collision avoidance is guaranteed if the distance between the robot and a moving obstacle is nonzero. A nominal trajectory is assumed to be known from off-line planning. The main idea is to change the velocity along the nominal trajectory so that collisions are avoided. A feedback control is developed and local asymptotic stability is proved if the velocity of the moving obstacle is bounded. Furthermore, a solution to the problem of inverse dynamics for the mobile robot is given. Simulation results verify the value of the proposed strategy.
    Keywords: CYBERNETICS
    Type: Automatica (ISSN 0005-1098); 29; 2; p. 309-322.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-28
    Description: It has been experimentally verified that the jerk of the desired trajectory adversely affects the performance of the tracking control algorithms for robotic manipulators. In this paper, the reasons behind this effect are investigated, and an optimization problem that minimizes joint jerk over a prespecified Cartesian space trajectory is stated. The necessary conditions are derived, and a numerical algorithm is presented.
    Keywords: CYBERNETICS
    Type: Cooperative Intelligent Robotics in Space; Nov 06, 1990 - Nov 07, 1990; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The authors present a Petri net model of the coordination level of an intelligent mobile robot system (IMRS). The purpose of this model is to specify the integration of the individual efforts on path planning, supervisory motion control, and vision systems that are necessary for the autonomous operation of the mobile robot in a structured dynamic environment. This is achieved by analytically modeling the various units of the system as Petri net transducers and explicitly representing the task precedence and information dependence among them. The model can also be used to simulate the task processing and to evaluate the efficiency of operations and the responsibility of decisions in the coordination level of the IMRS. Some simulation results on the task processing and learning are presented.
    Keywords: CYBERNETICS
    Type: IEEE Conference on Decision and Control; Dec 05, 1990 - Dec 07, 1990; Honolulu, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-27
    Description: An optimal control formulation of the problem of collision avoidance of mobile robots moving in general terrains containing moving obstacles is presented. A dynamic model of the mobile robot and the dynamic constraints are derived. Collision avoidance is guaranteed if the minimum distance between the robot and the object is nonzero. A nominal trajectory is assumed to be known from off-line planning. The main idea is to change the velocity along the nominal trajectory so that collisions are avoided. Time consistency with the nominal plan is desirable. A numerical solution of the optimization problem is obtained. A perturbation control type of approach is used to update the optimal plan. Simulation results verify the value of the proposed strategy.
    Keywords: CYBERNETICS
    Type: In: 1992 American Control Conference, 11th, Chicago, IL, June 24-26, 1992, Proceedings. Vol. 2 (A93-22776 07-63); p. 1484-1488.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...