ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-12
    Description: An approach to the control of constrained dynamic systems such as multiple arm systems, multifingered grippers, and walking vehicles is described. The basic philosophy is to utilize a minimal set of inputs to control the trajectory and the surplus input to control the constraint or interaction forces and moments in the closed chain. A dynamic control model for the closed chain is derived that is suitable for designing a controller in which the trajectory and the interaction forces and moments are explicitly controlled. Nonlinear feedback techniques derived from differential geometry are then applied to linearize and decouple the nonlinear model. These ideas are illustrated through a planar example in which two arms are used for cooperative manipulation. Results from a simulation are used to illustrate the efficacy of the method.
    Keywords: CYBERNETICS
    Type: IEEE Transactions on Robotics and Automation (ISSN 1042-296X); 7; 618-625
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...