ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • LISM  (3)
  • Solar Physics  (2)
  • COMPUTER PROGRAMMING AND SOFTWARE  (1)
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Space science reviews 84 (1998), S. 285-296 
    ISSN: 1572-9672
    Keywords: LISM ; interstellar medium ; deuterium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Excellent HST/GHRS spectra of interstellar hydrogen and deuterium Lyman-α absorption toward nearby stars allow us to identify systematic errors that have plagued earlier work and to measure accurate values of the D/H ratio in local interstellar gas. Analysis of 12 sightlines through the Local Interstellar Cloud leads to a mean value of D/H = (1.50 ± 0.10) × 10-5 with all data points lying within ± 1σ of the mean. Whether or not the D/H ratio has different values elsewhere in the Galaxy and beyond is a very important open question that will be one of the major objectives of the Far Ultraviolet Spectroscopic Explorer (FUSE) mission.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Space science reviews 78 (1996), S. 157-164 
    ISSN: 1572-9672
    Keywords: LISM ; interstellar medium ; deuterium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The GHRS has obtained high-resolution spectra of interstellar gas toward 19 nearby stars. These excellent data show that the Sun is located inside the Local Interstellar Cloud (LIC) with other warm clouds nearby. I will summarize the physical properties of these clouds and the three-dimensional structure of this warm interstellar gas. There is now clear evidence that the Sun and other late-type stars are surrounded by hydrogen walls in the upwind direction. The D/H ratio probably has a constant value in the LIC, (1.6 ± 0.2) × 10−5, consistent with the measured values for all LIC lines of sight.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Space science reviews 84 (1998), S. 309-315 
    ISSN: 1572-9672
    Keywords: LISM ; interstellar medium ; deuterium ; 3He ; helium-3
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract This report summarizes the issues discussed in Working Group VI concerning the accuracy of measurements of D/H and 3He/H in the local interstellar medium, possible systematic errors, and emerging trends in the results.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: The applications of computers and data processing to astronomy are discussed. Among the topics covered are the emerging national information infrastructure, workstations and supercomputers, supertelescopes, digital astronomy, astrophysics in a numerical laboratory, community software, archiving of ground-based observations, dynamical simulations of complex systems, plasma astrophysics, and the remote control of fourth dimension supercomputers.
    Keywords: COMPUTER PROGRAMMING AND SOFTWARE
    Type: National Academy of Sciences(National Research Council, Working Papers: Astronomy and Astrophysics Panel Reports; 25 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: We summarize the main results obtained from the analysis of ultraviolet emission line profiles of coronal late-type stars observed with the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope. The excellent GHRS spectra provide new information on magnetohydrodynamic phenomena in the chromospheres and transition regions of these stars. One exciting new result is the discovery of broad components in the transition region lines of active stars that we believe provide evidence for microflare heating in these stars.
    Keywords: Solar Physics
    Type: NASA-CR-204569 , NAS 1.26:204569 , Magnetodynamic Phenomena in the Solar Atmosphere: Prototypes of Stellar Magnetic Activity; 55-62
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: We analyze high-resolution spectra of the nearby (1.34 pc) stars alpha Cen A (G2 V) and alpha Cen B (K1 V), which were obtained with the Goddard High Resolution Spectrograph on the Hubble Space Telescope. The observations consist of echelle spectra of the Mg II 2800 A and Fe II 2599 A resonance lines and the Lyman-alpha lines of hydrogen and deuterium. The interstellar gas has a velocity (v = - 18.0 +/- 0.2 km/s) consistent with the local flow vector proposed for this line of sight by Lailement & Berlin (1992). The temperature and nonthermal velocity inferred from the Fe II, Mg II, and D I line profiles are T = 5400 +/- 500 K and xi = 1.20 +/- 0.25 km/s, respectively. However, single-component fits to the H I Lyman-alpha lines yield a Doppler parameter (b(sub HI) = 11.80 km/s) that implies a significantly warmer temperature of 8350 K, and the velocity of the H I absorption (v = - 15.8 +/- 0.2 km/s) is redshifted by about 2.2 km/s with respect to the Fe II, Mg II, and D I lines. The one-component model of the interstellar gas suggests natural logarithm N base HI = 18.03 +/- 0.01 and D/H = (5.7 +/- 0.2) x 10(exp -6) . These parameters lead to a good fit to the observed spectra, but this model does not explain the higher temperature and redshift of H I relative to the other interstellar lines. The most sensible way to resolve the discrepancy between H(I) and the other lines is to add a second absorption component to the H(I) lines. This second component is hotter (T approx. equals 30,000 K), is redshifted relative to the primary component by 2-4 km/s, and has a column density too low to be detected in the Fe(II), Mg(II), and D(I) lines. We propose that the gas responsible for this component is located near the heliopause, consisting of the heated H I gas from the interstellar medium that is compressed by the solar wind. This so-called 'hydrogen wall' is predicted by recent multifluid gasdynamical models of the interstellar gas and solar wind interaction. Our data provide the first measurements of the temperature and column density of H(I) in the hydrogen wall. After considering the effects that a corresponding hydrogen wall around alpha Cen would have on our analysis, our best estimates for the parameters of the solar hydrogen wall are natural log N(sup (2))(H(I)) = 14.74 +/- 0.24, b(sup (2))(H(I)) = 21.9 +/- 1.7 km/s (corresponding to T = 29,000 +/- 5000 K), and v(sup (2))(H(I)) greater than -16km/s. Unfortunately, the existence of this heated H(I) reduces our ability to compute the H(I) column density of the interstellar medium accurately because, with slight alterations to our assumed stellar Lyman-alpha profiles, we discovered that acceptable two-component fits also exist with natural log N(H(I))approx. 17.6. We, therefore, quote large error bars for the H I column density along the alpha Cen line of sight, natural log N(H(I)) = 17.80 +/- 0.30. For this range in N(H(I)), n(H(I)) = 0.15 /cu.cm (+/- a factor of 2) and D/H = (0.5-1.9) x 10(exp -5). This is the first direct measurement of the H(I) density in a local cloud and allows us to predict the distance from the Sun to the edge of the local cloud along various lines of sight. This range in D/H is consistent with the value D/H = 1.6 x 10(exp -5) previously derived for the Capella and Procyon lines of sight. We cannot tell whether D/H ratio varies or is constant in the local interstellar medium, but we do find that the D(I)/Mg(II) ratio for the alpha Cen line of sight is about 4 times smaller than for the Capella and Procyon lines of sight. Therefore, either D/H or the Mg depletion varies significantly over distance scales of only a few parsecs.
    Keywords: Solar Physics
    Type: NASA-CR-205250 , NAS 1.26:205250 , Astrophysical Journal; 463; 1; 254-270
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...