ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 43 (1994), S. 615-621 
    ISSN: 0006-3592
    Keywords: endothelial cell metabolism ; strain ; endothelin ; prostacyclin ; tissue plasminogen activator ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The effects of cyclical expansion and elaxation of the vessel wall on endothelial cell metabolism have been modeled using a uniaxial strain device and cultured endothelial cell monolayers. Also, the effects of stopping and then restarting cyclic strain on metabolite secreation rates were determined. Secretion rates of prostacyclin (PGI2), endothelin, tissue plasminogen activator (t-PA), and plasminogen activator inhibitor-type 1 (PaI-1) by endothelial cells were constant over24-h periods The secreation of both PGI2 and endothelin was enhanced in cells exposed to high physiological levels of cyclical strain (10% at 1Hz) compared with controls, while tPA production was unaltered. These results were true for both human and bovine endothelial cells. Characterization of the response of human endothelial cells to cyclical strain made evaluation of stretch effects on PAl-1 secretion possible. A nearly twofold increase in PAl-1 secretion by cells exposed to arterial levels of strain was observed. Endothelin secretion remained elevated even after strain was stopped for 12 h, while PGl2 secretion returned to control values upon cessation of cyclic stretch. These results indicate that physiological levels of cyclic mechanical strain ca significantly modulate secretion of vasoactive metabolited form endothelial cells. The changes sen secretion are, in some cases, quite different from those caused by arterial levels of fluid shear stress exposure. © 1994 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0006-3592
    Keywords: hydrodynamic adhesion ; endothelial cells ; metastasis ; RGD peptides ; integrins ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Arrest and formation of stable adhesive interactions between circulating cells and the endothelium or exposed subendothelial matrix are important processes in many biological situations. We have developed a highly sensitive hydrodynamic assay that utilizes a parallel-plate flow chamber, video microscopy, and digital image processing to separate and measure the primary arrest and adhesion stabilization of flowing cells. Our data indicate that primary cell contact triggers secondary adhesion stabilization, and the secondary events are likely to be critical to metastasis formation. To study the relationship between tumor cell adhesion stabilization and organ-specific blood-borne metastasis, we investigated the adhesion stabilization of metastatic murine RAW117 large-cell lymphoma cells to the extracellular matrix proteins fibronectin and vitronectin, several Arg-Gly-Asp (RGD) containing peptides, and microvascular endothelial cells from the liver or lung. The highly liver metastatic RAW117-H10 subline showed the fastest stabilization to fibronectin, vitronectin, and RGD peptides. Poorly metastatic RAW117-P cells had stabilization times 3-10 times longer than for RAW117-H10 cells, while the lung- and liver-metastatic RAW117-L17 subline failed to stabilize at all. The adhesion stabilization of the RAW117-H10 cells to the extracellular matrix proteins and RGD peptides was inhibited by anti-β3 integrin monoclonal antibodies and RGD peptides. In contrast, the RAW117-L17 subline had the shortest stabilization time to unstimulated microvascular endothelial cells of the lung and hepatic sinusoids, followed by RAW117-H10 cells and RAW117-P cells. Monoclonal antibodies against the β3 integrin subunit and RGD peptides did not inhibit adhesion stabilization of RAW117-H10 cells to endothelial cells, suggesting that different metastatic variants of large-cell lymphoma cells use differing mechanisms to adhere to organ-specific endothelial cells. © 1996 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 50 (1996), S. 555-561 
    ISSN: 0006-3592
    Keywords: human aortic smooth muscle cells ; shear stress ; restenosis ; growth rate ; PCNA ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: After cardiovascular intervention, smooth muscle cells (SMC) are directly exposed to blood flow and thus their behavior might be affected by fluid hemodynamic forces. The aim of this study was to determine the effect of fluid shear stress on the growth rate of SMC. Human aortic smooth muscle cells (hASMC) were seeded on fibronectin-coated glass slides and were exposed to different levels of shear stress using parallel plate flow chambers. After 24 h, cell numbers in the stationary and sheared cultures were measured by a Coulter counter. Results demonstrated that increasing shear stress significantly reduces the proliferation rate of hASMC (P 〈 0.05). Comparable lactate dehydrogenase levels in the media of stationary and flow cultures provided evidence that the reduction of cell number was not due to cell injury. Proliferating cell nuclear antigen (PCNA) immunofluorescence studies indicated that the cell cultures were not growth arrested 24 h after exposure to shear stress, and that the differences in PCNA staining between stationary control and flow cultures were comparable to the cell counts. © 1996 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...