ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-10-13
    Description: Author(s): Y. S. Chen, D. Reuter, A. D. Wieck, and G. Bacher [Phys. Rev. Lett. 107, 167601] Published Wed Oct 12, 2011
    Keywords: Condensed Matter: Electronic Properties, etc.
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1989-04-28
    Description: Confirmed infection with HTLV-II (human T cell leukemia virus type II) has been described only in rare cases. The major limitation to serological diagnosis of HTLV-II has been the difficulty of distinguishing HTLV-II from HTLV-I (human T cell leukemia virus type I) infection, because of substantial cross-reactivity between the viruses. A sensitive modification of the polymerase chain reaction method was used to provide unambiguous molecular evidence that a significant proportion of intravenous drug abusers are infected with HTLV, and the majority of these individuals are infected with HTLV-II rather than HTLV-I. Of 23 individuals confirmed by polymerase chain reaction analysis to be infected with HTLV, 21 were identified to be infected with HTLV-II, and 2 were infected with HTLV-I. Molecular identification of an HTLV-II--infected population provides an opportunity to investigate the pathogenicity of HTLV-II in humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, H -- Swanson, P -- Shorty, V S -- Zack, J A -- Rosenblatt, J D -- Chen, I S -- New York, N.Y. -- Science. 1989 Apr 28;244(4903):471-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Diagnostics Division, Abbott Laboratories, North Chicago, IL 60064.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2655084" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; DNA, Viral/analysis ; DNA-Directed DNA Polymerase ; Genes, Viral ; HTLV-I Antibodies/analysis ; HTLV-I Infections/diagnosis/epidemiology/etiology ; HTLV-II Antibodies/*analysis ; HTLV-II Infections/diagnosis/*epidemiology/etiology ; Human T-lymphotropic virus 1/genetics/immunology ; Human T-lymphotropic virus 2/genetics/immunology ; Humans ; Immunoblotting ; Immunoenzyme Techniques ; Louisiana ; Molecular Sequence Data ; Sequence Homology, Nucleic Acid ; Substance-Related Disorders/*complications
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-08-15
    Description: The study of cancer genes in mouse models has traditionally relied on genetically-engineered strains made via transgenesis or gene targeting in embryonic stem cells. Here we describe a new method of cancer model generation using the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) system in vivo in wild-type mice. We used hydrodynamic injection to deliver a CRISPR plasmid DNA expressing Cas9 and single guide RNAs (sgRNAs) to the liver that directly target the tumour suppressor genes Pten (ref. 5) and p53 (also known as TP53 and Trp53) (ref. 6), alone and in combination. CRISPR-mediated Pten mutation led to elevated Akt phosphorylation and lipid accumulation in hepatocytes, phenocopying the effects of deletion of the gene using Cre-LoxP technology. Simultaneous targeting of Pten and p53 induced liver tumours that mimicked those caused by Cre-loxP-mediated deletion of Pten and p53. DNA sequencing of liver and tumour tissue revealed insertion or deletion mutations of the tumour suppressor genes, including bi-allelic mutations of both Pten and p53 in tumours. Furthermore, co-injection of Cas9 plasmids harbouring sgRNAs targeting the beta-catenin gene and a single-stranded DNA oligonucleotide donor carrying activating point mutations led to the generation of hepatocytes with nuclear localization of beta-catenin. This study demonstrates the feasibility of direct mutation of tumour suppressor genes and oncogenes in the liver using the CRISPR/Cas system, which presents a new avenue for rapid development of liver cancer models and functional genomics.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4199937/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4199937/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xue, Wen -- Chen, Sidi -- Yin, Hao -- Tammela, Tuomas -- Papagiannakopoulos, Thales -- Joshi, Nikhil S -- Cai, Wenxin -- Yang, Gillian -- Bronson, Roderick -- Crowley, Denise G -- Zhang, Feng -- Anderson, Daniel G -- Sharp, Phillip A -- Jacks, Tyler -- 1K99CA169512/CA/NCI NIH HHS/ -- 2-P01-CA42063/CA/NCI NIH HHS/ -- 5-U54-CA151884-04/CA/NCI NIH HHS/ -- DP1 MH100706/MH/NIMH NIH HHS/ -- K99 CA169512/CA/NCI NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- P30-CA14051/CA/NCI NIH HHS/ -- R00 CA169512/CA/NCI NIH HHS/ -- R01 DK097768/DK/NIDDK NIH HHS/ -- R01-CA115527/CA/NCI NIH HHS/ -- R01-CA132091/CA/NCI NIH HHS/ -- R01-CA133404/CA/NCI NIH HHS/ -- R01-EB000244/EB/NIBIB NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Oct 16;514(7522):380-4. doi: 10.1038/nature13589. Epub 2014 Aug 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [2]. ; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA. ; Tufts University and Harvard Medical School, Boston, Massachusetts 02115, USA. ; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA. ; 1] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [2] Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [3] Harvard-MIT Division of Health Sciences &Technology, Cambridge, Massachusetts 02139, USA [4] Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA. ; 1] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA. ; 1] David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [3] Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119044" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *CRISPR-Cas Systems ; Cell Transformation, Neoplastic/genetics ; Clustered Regularly Interspaced Short Palindromic Repeats/genetics ; Female ; *Genes, Tumor Suppressor ; Genes, p53/genetics ; Genetic Engineering/*methods ; Hepatocytes/metabolism/pathology ; Lipid Metabolism ; Liver/cytology/*metabolism/pathology ; Liver Neoplasms/genetics/metabolism/pathology ; Mice ; Molecular Sequence Data ; Mutagenesis/*genetics ; Mutation/*genetics ; Oncogenes/*genetics ; PTEN Phosphohydrolase/genetics ; Phosphorylation ; Proto-Oncogene Proteins c-akt/metabolism ; beta Catenin/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-01-29
    Description: Digital production, transmission and storage have revolutionized how we access and use information but have also made archiving an increasingly complex task that requires active, continuing maintenance of digital media. This challenge has focused some interest on DNA as an attractive target for information storage because of its capacity for high-density information encoding, longevity under easily achieved conditions and proven track record as an information bearer. Previous DNA-based information storage approaches have encoded only trivial amounts of information or were not amenable to scaling-up, and used no robust error-correction and lacked examination of their cost-efficiency for large-scale information archival. Here we describe a scalable method that can reliably store more information than has been handled before. We encoded computer files totalling 739 kilobytes of hard-disk storage and with an estimated Shannon information of 5.2 x 10(6) bits into a DNA code, synthesized this DNA, sequenced it and reconstructed the original files with 100% accuracy. Theoretical analysis indicates that our DNA-based storage scheme could be scaled far beyond current global information volumes and offers a realistic technology for large-scale, long-term and infrequently accessed digital archiving. In fact, current trends in technological advances are reducing DNA synthesis costs at a pace that should make our scheme cost-effective for sub-50-year archiving within a decade.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3672958/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3672958/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goldman, Nick -- Bertone, Paul -- Chen, Siyuan -- Dessimoz, Christophe -- LeProust, Emily M -- Sipos, Botond -- Birney, Ewan -- 088151/Wellcome Trust/United Kingdom -- England -- Nature. 2013 Feb 7;494(7435):77-80. doi: 10.1038/nature11875. Epub 2013 Jan 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK. goldman@ebi.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23354052" target="_blank"〉PubMed〈/a〉
    Keywords: *Archives ; Base Sequence ; Computers ; DNA/*chemical synthesis/*chemistry/economics ; Information Management/economics/*methods ; Molecular Sequence Data ; Sequence Analysis, DNA/economics ; Synthetic Biology/economics/methods
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1995-03-31
    Description: Members of the interleukin-6 family of cytokines bind to and activate receptors that contain a common subunit, gp130. This leads to the activation of Stat3 and Stat1, two cytoplasmic signal transducers and activators of transcription (STATs), by tyrosine phosphorylation. Serine phosphorylation of Stat3 was constitutive and was enhanced by signaling through gp130. In cells of lymphoid and neuronal origins, inhibition of serine phosphorylation prevented the formation of complexes of DNA with Stat3-Stat3 but not with Stat3-Stat1 or Stat1-Stat1 dimers. In vitro serine dephosphorylation of Stat3 also inhibited DNA binding of Stat3-Stat3. The requirement of serine phosphorylation for Stat3-Stat3.DNA complex formation was inversely correlated with the affinity of Stat3-Stat3 for the binding site. Thus, serine phosphorylation appears to enhance or to be required for the formation of stable Stat3-Stat3.DNA complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, X -- Blenis, J -- Li, H C -- Schindler, C -- Chen-Kiang, S -- CA46595/CA/NCI NIH HHS/ -- HL 21006/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1995 Mar 31;267(5206):1990-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Brookdale Center for Molecular Biology, Mount Sinai School of Medicine, New York, NY 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7701321" target="_blank"〉PubMed〈/a〉
    Keywords: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine ; Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; Cell Nucleus/metabolism ; Ciliary Neurotrophic Factor ; Cytoplasm/metabolism ; DNA/metabolism ; DNA-Binding Proteins/*metabolism ; Humans ; Interleukin-6/metabolism/*pharmacology ; Isoquinolines/pharmacology ; Mice ; Molecular Sequence Data ; Nerve Tissue Proteins/pharmacology ; Phosphorylation ; Piperazines/pharmacology ; *Promoter Regions, Genetic ; STAT1 Transcription Factor ; STAT3 Transcription Factor ; Serine/*metabolism ; Signal Transduction ; Threonine/metabolism ; Trans-Activators/*metabolism ; Tumor Cells, Cultured ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1996-01-26
    Description: An RNA virus, designated hepatitis G virus (HGV), was identified from the plasma of a patient with chronic hepatitis. Extension from an immunoreactive complementary DNA clone yielded the entire genome (9392 nucleotides) encoding a polyprotein of 2873 amino acids. The virus is closely related to GB virus C (GBV-C) and distantly related to hepatitis C virus, GBV-A, and GBV-B. HGV was associated with acute and chronic hepatitis. Persistent viremia was detected for up to 9 years in patients with hepatitis. The virus is transfusion-transmissible. It has a global distribution and is present within the volunteer blood donor population in the United States.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Linnen, J -- Wages, J Jr -- Zhang-Keck, Z Y -- Fry, K E -- Krawczynski, K Z -- Alter, H -- Koonin, E -- Gallagher, M -- Alter, M -- Hadziyannis, S -- Karayiannis, P -- Fung, K -- Nakatsuji, Y -- Shih, J W -- Young, L -- Piatak, M Jr -- Hoover, C -- Fernandez, J -- Chen, S -- Zou, J C -- Morris, T -- Hyams, K C -- Ismay, S -- Lifson, J D -- Hess, G -- Foung, S K -- Thomas, H -- Bradley, D -- Margolis, H -- Kim, J P -- New York, N.Y. -- Science. 1996 Jan 26;271(5248):505-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genelabs Technologies, Redwood City, CA 94063, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8560265" target="_blank"〉PubMed〈/a〉
    Keywords: Acute Disease ; Amino Acid Sequence ; Base Sequence ; Blood Donors ; Blood Transfusion/*adverse effects ; Blood-Borne Pathogens ; Chronic Disease ; Cloning, Molecular ; Consensus Sequence ; Disease Transmission, Infectious ; Flaviviridae/genetics ; Genome, Viral ; Hepatitis Viruses/chemistry/*genetics/isolation & purification ; Hepatitis, Viral, Human/epidemiology/transmission/*virology ; Humans ; Molecular Sequence Data ; Polymerase Chain Reaction ; RNA Viruses/chemistry/*genetics/isolation & purification ; RNA, Viral/blood/genetics ; Sequence Alignment ; United States/epidemiology ; Viral Proteins/chemistry/genetics ; Viremia/epidemiology/virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-05-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Camerini, D -- Planelles, V -- Chen, I S -- New York, N.Y. -- Science. 1994 May 20;264(5162):1160-1; author reply 1162-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7909961" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD4/*physiology ; Antigens, Differentiation, T-Lymphocyte/*physiology ; Base Sequence ; *Cell Fusion ; Cell Line ; Dipeptidyl Peptidase 4 ; Gene Products, env/physiology ; Giant Cells/physiology ; HIV-1/*physiology ; Humans ; Molecular Sequence Data
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1988-05-13
    Description: The human T-cell leukemia virus (HTLV) types I and II have two nonstructural genes that are encoded in overlapping reading frames. One of these genes, known as tax, has been shown to encode a protein responsible for enhanced transcription (transactivation) from the viral long terminal repeats (LTRs). Genetic evidence indicates that the second nonstructural gene of HTLV-II, here designated rex, acts in trans to modulate tax gene-mediated transactivation in a concentration-dependent fashion. The rex gene may regulate the process of transactivation during the viral life cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosenblatt, J D -- Cann, A J -- Slamon, D J -- Smalberg, I S -- Shah, N P -- Fujii, J -- Wachsman, W -- Chen, I S -- 1 R01 CA 43370/CA/NCI NIH HHS/ -- 1K11 CA 01314/CA/NCI NIH HHS/ -- CA 32737/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1988 May 13;240(4854):916-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, UCLA School of Medicine.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2834826" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; DNA, Recombinant ; DNA, Viral/genetics ; Deltaretrovirus/*genetics ; *Genes, Regulator ; *Genes, Viral ; Mutation ; Promoter Regions, Genetic ; RNA, Messenger/genetics/metabolism ; RNA, Viral/genetics/metabolism ; Simian virus 40/genetics ; *Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1984-05-25
    Description: In order to further define the mechanisms by which polypeptide growth factors regulate gene transcription and cellular growth, expression cloning techniques were used to select human epidermal growth factor (EGF) receptor complementary DNA clones. The EGF 3' coding domain shows striking homology to the transforming gene product of avian erythroblastosis virus (v-erbB). Over-expression of EGF receptors in A431 cell lines correlates with increased EGF receptor mRNA levels and amplification (up to 110 times) of the apparently singular EGF receptor gene. There appear to be three cytoplasmic polyadenylated RNA products of EGF receptor gene expression in A431 cells, one of which contains only 5' (EGF binding domain) sequences and is postulated to encode the secreted EGF receptor-related protein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, C R -- Chen, W S -- Kruiger, W -- Stolarsky, L S -- Weber, W -- Evans, R M -- Verma, I M -- Gill, G N -- Rosenfeld, M G -- New York, N.Y. -- Science. 1984 May 25;224(4651):843-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6326261" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cell Line ; Cloning, Molecular ; DNA/*genetics ; Gene Amplification ; Gene Expression Regulation ; Polymorphism, Genetic ; RNA, Messenger/genetics ; Receptor, Epidermal Growth Factor ; Receptors, Cell Surface/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1984-10-12
    Description: Human T-cell leukemia viruses (HTLV) are closely associated with some human T-cell leukemias and lymphomas. A unique 3' region of the HTLV genome is believed to be involved in HTLV-induced cellular transformation, although the function of this region has yet to be determined. A subgenomic messenger RNA transcribed from this region of HTLV has now been characterized. These results provide direct evidence for the expression of a novel gene in HTLV.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wachsman, W -- Shimotohno, K -- Clark, S C -- Golde, D W -- Chen, I S -- CA 09297/CA/NCI NIH HHS/ -- CA 30388/CA/NCI NIH HHS/ -- CA 32737/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1984 Oct 12;226(4671):177-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6091270" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cell Line ; Cell Transformation, Viral ; Deltaretrovirus/*genetics/physiology ; *Genes, Viral ; Humans ; Nucleic Acid Hybridization ; RNA Splicing ; RNA, Messenger/genetics ; RNA, Viral/*genetics ; T-Lymphocytes ; Transcription, Genetic ; Viral Proteins/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...