ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Baroclinic flows  (4)
  • Circulation/ Dynamics  (4)
  • 1
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 1267-1277, doi:10.1175/2007JPO3906.1.
    Description: A two-layer quasigeostrophic model in a channel is used to study the influence of lateral displacements of regions of different sign mean potential vorticity gradient (Πy) on the growth rate and structure of linearly unstable waves. The mean state is very idealized, with a region of positive Πy in the upper layer and a region of negative Πy in the lower layer; elsewhere Πy is zero. The growth rate and structure of the model’s unstable waves are quite sensitive to the amount of overlap between the two regions. For large amounts of overlap (more than several internal deformation radii), the channel modes described by Phillips’ model are recovered. The growth rate decreases abruptly as the amount of overlap decreases below the internal deformation radius. However, unstable modes are also found for cases in which the two nonzero Πy regions are separated far apart. In these cases, the wavenumber of the unstable waves decreases such that the aspect ratio of the wave remains O(1). The waves are characterized by a large-scale barotropic component that has maximum amplitude near one boundary but extends all the way across the channel to the opposite boundary. Near the boundaries, the wave is of mixed barotropic–baroclinic structure with cross-front scales on the order of the internal deformation radius. The perturbation heat flux is concentrated near the nonzero Πy regions, but the perturbation momentum flux extends all the way across the channel. The perturbation fluxes act to reduce the isopycnal slopes near the channel boundaries and to transmit zonal momentum from the region of Πy 〉 0 to the region on the opposite side of the channel where Πy 〈 0. These nonzero perturbation momentum fluxes are found even for a mean state that has no lateral shear in the velocity field.
    Description: This work was supported by NSF Grants OPP-0421904, OCE-0423975 (MAS), and OCE- 85108600 (JP).
    Keywords: Baroclinic flows ; Barotropic flows
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 1092–1097, doi:10.1175/JPO3045.1.
    Description: The impact of the observed relationship between sea surface temperature and surface wind stress on baroclinic instability in the ocean is explored using linear theory and a nonlinear model. A simple parameterization of the influence of sea surface temperature on wind stress is used to derive a surface boundary condition for the vertical velocity at the base of the oceanic Ekman layer. This boundary condition is applied to the classic linear, quasigeostrophic stability problem for a uniformly sheared flow originally studied by Eady in the 1940s. The results demonstrate that for a wind directed from warm water toward cold water, the coupling acts to enhance the growth rate, and increase the wavelength, of the most unstable wave. Winds in the opposite sense reduce the growth rate and decrease the wavelength of the most unstable wave. For representative coupling strengths, the change in growth rate can be as large as ±O(50%). This effect is largest for shallow, strongly stratified, low-latitude flows.
    Description: This work was supported by the Office of Naval Research Grant N00014-05-1-0300.
    Keywords: Wind stress ; Instability ; Sea surface temperature ; Baroclinic flows ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2820–2835, doi:10.1175/JPO-D-15-0101.1.
    Description: The response of a convective ocean basin to variations in atmospheric temperature is explored using numerical models and theory. The results indicate that the general behavior depends strongly on the frequency at which the atmosphere changes relative to the local response time to air–sea heat flux. For high-frequency forcing, the convective region in the basin interior is essentially one-dimensional and responds to the integrated local surface heat flux anomalies. For low-frequency forcing, eddy fluxes from the boundary current into the basin interior become important and act to suppress variability forced by the atmosphere. A theory is developed to quantify this time-dependent response and its influence on various oceanic quantities. The amplitude and phase of the temperature and salinity of the convective water mass, the meridional overturning circulation, the meridional heat flux, and the air–sea heat flux predicted by the theory compare well with that diagnosed from a series of numerical model calculations in both strongly eddying and weakly eddying regimes. Linearized analytic solutions provide direct estimates of each of these quantities and demonstrate their dependence on the nondimensional numbers that characterize the domain and atmospheric forcing. These results highlight the importance of mesoscale eddies in modulating the mean and time-dependent ocean response to atmospheric variability and provide a dynamical framework with which to connect ocean observations with changes in the atmosphere and surface heat flux.
    Description: This study was supported by the National Science Foundation under Grant OCE-1232389.
    Description: 2016-05-01
    Keywords: Circulation/ Dynamics ; Atmosphere-ocean interaction ; Deep convection ; Eddies ; Meridional overturning circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 2457-2475, doi:10.1175/JPO-D-17-0186.1.
    Description: A subpolar marginal sea, like the Nordic seas, is a transition zone between the temperature-stratified subtropics (the alpha ocean) and the salinity-stratified polar regions (the beta ocean). An inflow of Atlantic Water circulates these seas as a boundary current that is cooled and freshened downstream, eventually to outflow as Deep and Polar Water. Stratification in the boundary region is dominated by a thermocline over the continental slope and a halocline over the continental shelves, separating Atlantic Water from Deep and Polar Water, respectively. A conceptual model is introduced for the circulation and water mass transformation in a subpolar marginal sea to explore the potential interaction between the alpha and beta oceans. Freshwater input into the shelf regions has a slight strengthening effect on the Atlantic inflow, but more prominently impacts the water mass composition of the outflow. This impact of freshwater, characterized by enhancing Polar Water outflow and suppressing Deep Water outflow, is strongly determined by the source location of freshwater. Concretely, perturbations in upstream freshwater sources, like the Baltic freshwater outflow into the Nordic seas, have an order of magnitude larger potential to impact water mass transports than perturbations in downstream sources like the Arctic freshwater outflow. These boundary current dynamics are directly related to the qualitative stratification in transition zones and illustrate the interaction between the alpha and beta oceans.
    Description: This research was supported by the Research Council of Norway project NORTH. Support for the publication was provided by the University of Bergen. Ocean Outlook has supported a research visit for EL to Woods Hole Oceanographic Institute where much of the current work has been carried out. Support forMAS was provided by the National Science Foundation Grant OCE-1558742.
    Keywords: Continental shelf/slope ; Baroclinic flows ; Boundary currents ; Buoyancy ; Freshwater ; Thermohaline circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 1822–1842, doi:10.1175/JPO-D-14-0147.1.
    Description: Influences of time-dependent precipitation on water mass transformation and heat budgets in an idealized marginal sea are examined using theoretical and numerical models. The equations proposed by Spall in 2012 are extended to cases with time-dependent precipitation whose form is either a step function or a sinusoidal function. The theory predicts the differences in temperature and salinity between the convective water and the boundary current as well as the magnitudes of heat fluxes into the marginal sea and across the sea surface. Moreover, the theory reveals that there are three inherent time scales: relaxation time scales for temperature and salinity and a precipitation time scale. The relaxation time scales are determined by a steady solution of the theoretical model with steady precipitation. The relaxation time scale for temperature is always smaller than that for salinity as a result of not only the difference in the form of fluxes at the surface but also the variation in the eddy transport from the boundary current. These three time scales and the precipitation amplitude determine the strength of the ocean response to changes in precipitation and the phase relation between precipitation, changes in salinity and temperature, and changes in heat fluxes. It is demonstrated that the theoretical predictions agree qualitatively well with results from the eddy-resolving numerical model. This demonstrates the fundamental role of mesoscale eddies in the ocean response to time-dependent forcing and provides a framework with which to assess the extent to which observed variability in marginal sea convection and water mass transformation are consistent with an external forcing by variations in precipitation.
    Description: This work was initiated at the 2013 WHOI Geophysical Fluid Dynamics Summer Program, which was supported by the National Science Foundation and the Office of Naval Research. This work was also supported by Grant-in-Aid for Research Fellow (25·8466) of the Ministry of Education, Culture, Sports and Technology (MEXT), Japan, the Program for Leading Graduate Schools, MEXT, Japan (YY), and by the National Science Foundation Grant OCE-1232389 (MAS).
    Description: 2016-01-01
    Keywords: Circulation/ Dynamics ; Boundary currents ; Deep convection ; Eddies ; Ocean dynamics ; Atm/Ocean Structure/ Phenomena ; Precipitation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2806–2819, doi:10.1175/JPO-D-15-0061.1.
    Description: An eastward-flowing current of a homogeneous fluid with velocity U, contained in a channel of width L, impinges on an island of width of O(L), and the resulting interaction and dynamics are studied for values of the supercriticality parameter, b = βL2/U, both larger and smaller than π2. The former case is subcritical with respect to Rossby waves, and the latter is supercritical. The nature of the flow field depends strongly on b, and in particular, the nature of the flow around the island and the proportion of the flow passing to the north or south of the island are sensitive to b and to the position of the island in the channel. The problem is studied analytically in a relatively simple, nonlinear quasigeostrophic and adiabatic framework and numerically with a shallow-water model that allows a qualitative extension of the results to the equator. Although the issues involved are motivated by the interaction of the Equatorial Undercurrent and the Galapagos Islands, the analysis presented here focuses on the fundamental issue of the distinctive nature of the flow as a function of Rossby wave criticality.
    Description: Supported by the National Science Foundation Grant OCE-0959381.
    Description: 2016-05-01
    Keywords: Circulation/ Dynamics ; Ocean circulation ; Ocean dynamics ; Waves, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 2267–2268, doi:10.1175/JPO-D-16-0057.1.
    Description: The original article that was the subject of this comment/reply can be found at http://journals.ametsoc.org/doi/abs/10.1175/JPO-D-15-0061.1.
    Description: 2017-01-12
    Keywords: Circulation/ Dynamics ; Circulation/ Dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 49(7), (2019): 1889-1904, doi:10.1175/JPO-D-19-0053.1.
    Description: A high-resolution numerical model, together with in situ and satellite observations, is used to explore the nature and dynamics of the dominant high-frequency (from one day to one week) variability in Denmark Strait. Mooring measurements in the center of the strait reveal that warm water “flooding events” occur, whereby the North Icelandic Irminger Current (NIIC) propagates offshore and advects subtropical-origin water northward through the deepest part of the sill. Two other types of mesoscale processes in Denmark Strait have been described previously in the literature, known as “boluses” and “pulses,” associated with a raising and lowering of the overflow water interface. Our measurements reveal that flooding events occur in conjunction with especially pronounced pulses. The model indicates that the NIIC hydrographic front is maintained by a balance between frontogenesis by the large-scale flow and frontolysis by baroclinic instability. Specifically, the temperature and salinity tendency equations demonstrate that the eddies act to relax the front, while the mean flow acts to sharpen it. Furthermore, the model reveals that the two dense water processes—boluses and pulses (and hence flooding events)—are dynamically related to each other and tied to the meandering of the hydrographic front in the strait. Our study thus provides a general framework for interpreting the short-time-scale variability of Denmark Strait Overflow Water entering the Irminger Sea.
    Description: MAS was supported by the National Science Foundation (NSF) under Grants OCE-1558742 and OCE-1534618. RSP, PL, and DM were supported by NSF under Grants OCE-1558742 and OCE-1259618. WJvA was supported by the Helmholtz Infrastructure Initiative FRAM. TWNH and MA were supported by NSF under Grants OCE-1633124 and OCE-118123.
    Description: 2020-07-01
    Keywords: Baroclinic flows ; Frontogenesis/frontolysis ; Meridional overturning circulation ; Ocean dynamics ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...