ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    Publication Date: 2023-03-14
    Keywords: B1; B2; B3; B4; B5; B6; B7; B8; bog; Capitulum, dry weight; Capitulum, water content; Capitulum, width; Capitulum density; Carbon; Carbon/Nitrogen ratio; Elemental analyzer CHNS-O (EA1110); Elevation of event; Event label; Fascicle density; fen; functional plant trait; HL_HRS; HL_IS; HL_KAL; HL_KLA; HL_KS; HL_LA; HL_TE; Latitude of event; Longitude of event; Mire; mire succession; Moisture index; Nitrogen; Northern_peatlands_B1; Northern_peatlands_B2; Northern_peatlands_B3; Northern_peatlands_B4; Northern_peatlands_B5; Northern_peatlands_B6; Northern_peatlands_B7; Northern_peatlands_B8; Northern_peatlands_HL_HRS; Northern_peatlands_HL_IS; Northern_peatlands_HL_KAL; Northern_peatlands_HL_KLA; Northern_peatlands_HL_KS; Northern_peatlands_HL_LA; Northern_peatlands_HL_TE; Northern_peatlands_S1; Northern_peatlands_S13; Northern_peatlands_S2; Northern_peatlands_S3; Northern_peatlands_S31; Northern_peatlands_S33; Northern_peatlands_S4; Northern_peatlands_S41; Northern_peatlands_S42; Northern_peatlands_S5; Northern_peatlands_S51; Northern_peatlands_S53; Northern_peatlands_S6; Northern_peatlands_u10; Northern_peatlands_u13; Northern_peatlands_u14; Northern_peatlands_u16; Northern_peatlands_u18; Northern_peatlands_u2; Northern_peatlands_u24; Northern_peatlands_u26; Northern_peatlands_u29; Northern_peatlands_u33; Northern_peatlands_u43; Northern_peatlands_u52; Northern_peatlands_u62; Northern_peatlands_u65; Northern_peatlands_u70; Optional event label; Peatland; Peat thickness; pH; S1; S13; S2; S3; S31; S33; S4; S41; S42; S5; S51; S53; S6; Species; u10; u13; u14; u16; u18; u2; u24; u26; u29; u33; u43; u52; u62; u65; u70
    Type: Dataset
    Format: text/tab-separated-values, 4199 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-03-14
    Keywords: B1; B2; B3; B4; B5; B6; B7; B8; bog; Carbon; Carbon/Nitrogen ratio; Elemental analyzer CHNS-O (EA1110); Elevation of event; Event label; fen; functional plant trait; HL_HRS; HL_IS; HL_KAL; HL_KLA; HL_KS; HL_LA; HL_TE; Latitude of event; Leave size; Longitude of event; Measured using software ImageJ; Mire; mire succession; Moisture index; Nitrogen; Northern_peatlands_B1; Northern_peatlands_B2; Northern_peatlands_B3; Northern_peatlands_B4; Northern_peatlands_B5; Northern_peatlands_B6; Northern_peatlands_B7; Northern_peatlands_B8; Northern_peatlands_HL_HRS; Northern_peatlands_HL_IS; Northern_peatlands_HL_KAL; Northern_peatlands_HL_KLA; Northern_peatlands_HL_KS; Northern_peatlands_HL_LA; Northern_peatlands_HL_TE; Northern_peatlands_S1; Northern_peatlands_S11; Northern_peatlands_S2; Northern_peatlands_S3; Northern_peatlands_S31; Northern_peatlands_S33; Northern_peatlands_S4; Northern_peatlands_S41; Northern_peatlands_S42; Northern_peatlands_S5; Northern_peatlands_S51; Northern_peatlands_S53; Northern_peatlands_S6; Northern_peatlands_u10; Northern_peatlands_u13; Northern_peatlands_u14; Northern_peatlands_u16; Northern_peatlands_u18; Northern_peatlands_u2; Northern_peatlands_u24; Northern_peatlands_u26; Northern_peatlands_u29; Northern_peatlands_u33; Northern_peatlands_u43; Northern_peatlands_u52; Northern_peatlands_u62; Northern_peatlands_u65; Northern_peatlands_u70; Optional event label; Peatland; Peat thickness; pH; Plant height; S1; S11; S2; S3; S31; S33; S4; S41; S42; S5; S51; S53; S6; Species; Specific leaf area; u10; u13; u14; u16; u18; u2; u24; u26; u29; u33; u43; u52; u62; u65; u70
    Type: Dataset
    Format: text/tab-separated-values, 19294 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-30
    Description: We estimated plant community composition as the projection cover of each vascular plant and moss species. We measured the following vascular plant functional traits: plant height, leaf size (LS), specific leaf area (SLA) and leaf carbon (C) and nitrogen (N) contents from the most common species in each site. We measured the following Sphagnum traits: stand density (number of shoots cm-2), capitulum width (cap_width, mm) and dry weight (cap_dw, mg), fascicle density (number cm-1), capitulum dry matter content (CDMC, mg g-1), capitulum water content (cap_wc, g g-1) and capitulum C and N contents and C:N ratio. The data was collected from 47 northern peatlands located in land uplift regions in Finland, Sweden and Russia: Sävar on the west coast of Bothnian Bay (63o50'N, 20o40'E, Sweden), Siikajoki (64°45' N, 24°43', Finland) and Hailuoto island (65°07' N, 24°71' E, Finland) on the east coast of Bothnian Bay, and Belomorsk-Virma (63°90' N, 36°50' E, Russia) on the coast of the White Sea. The data was collected from the different areas as follows: Siikajoki sites were sampled in August 2016, Sävar sites at the end of June 2017, Hailuoto sites during July 2017 and Belomorsk sites at the end of August 2017. We determined the plant community composition by visually estimating the projection cover of each species separately for field (vascular plants) and moss layer using the scale 0.1%, 0.25%, 0.5%, 1%, 2%, 3%, etc. There were fifteen 50 x 50 cm plots in each peatland at Siikajoki and Belomorsk-Virma, and 10 at Sävar and Hailuoto. The sample plots were located five meters apart along a transect starting from the generally treeless peatland margin and heading towards the peatland center. Plant traits were measured as follows: To measure SLA (i.e., the one-sided area of a fresh leaf divided by its oven-dry mass, cm2 g-1), the freshly picked leaf or a sample of 3 leaves in case of shrubs with small leaves was pressed flat between a board and a glass and a standardized photo was taken. The leaf size (LS, cm2) was analysed from the photos with ImageJ. The leaf samples were stored in paper bags and dried at 60°C for a minimum of 48h. The dried samples were weighed, and SLA calculated. The SLA samples were used for carbon (C) and nitrogen (N) content analysis. Leaves from each species from each site were pooled into one sample, which was milled (Retsch MM301 mill) and analyzed for C and N concentrations and for C:N ration on a CHNS–O Elemental analyzer (EA1110) (University of Oulu). Sphagnum moss samples for trait measurements were collected with a corer (7 cm diameter, area 38 cm2, height at least 8 cm) to maintain the natural density of the stand. Stand density was measured as the number of mosses in the sample. From ten individuals we measured the width of the capitula and counted the number of fascicles from a five cm segment below capitulum. We separated the ten moss individuals into capitulum and stem (5 cm below capitula) wetted them and allowed to dry on top of tissue paper for 2 min before weighing them for water filled fresh weight. Samples were placed on paper bags and dried at 60 °C for at least 48h after which the dry mass of capitula and stems were measured. CDMC and cap_wc were calculated from the fresh and dry weight. We used the capitula samples for analyses of C and N concentrations and for C:N ratio, and treated them similarly to vascular plant samples. The data was collected to find out how functional diversity and trait composition of vascular plant and Sphagnum moss communities develops during peatland succession across land uplift regions.
    Keywords: bog; fen; functional plant trait; Mire; mire succession; Peatland
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-11-01
    Keywords: Agrostis canina; Andromeda polifolia; Aulacomnium palustre; B1; B2; B3; B4; B5; B6; B7; B8; Betula nana; Betula pubescens; bog; Brachythecium sp.; Calamagrostis purpurea; Calla palustris; Calliergon cordifolium; Calliergon giganteum; Calluna vulgaris; Carex aquatilis; Carex canescens; Carex chordorrhiza; Carex diandra; Carex globularis; Carex lasiocarpa; Carex limosa; Carex livida; Carex magellanica; Carex nigra; Carex pauciflora; Carex rariflora; Carex rostrata; Chamaedaphne calyculata; Cladina arbuscula; Cladonia alpestre; Cladonia stygia; Drosera longifolia; Drosera rotundifolia; Empetrum nigrum; Epilobium palustre; Equisetum fluviatile; Eriophorum angustifolium; Eriophorum vaginatum; Event label; fen; functional plant trait; Galium palustre; HL_HRS; HL_IS; HL_KAL; HL_KLA; HL_KS; HL_LA; HL_TE; Ledum palustre; Liverwort; Lysimachia thyrsiflora; Menyanthes trifoliata; Mire; mire succession; Moisture index; Mylia anomala; Myrica gale; Northern_peatlands_B1; Northern_peatlands_B2; Northern_peatlands_B3; Northern_peatlands_B4; Northern_peatlands_B5; Northern_peatlands_B6; Northern_peatlands_B7; Northern_peatlands_B8; Northern_peatlands_HL_HRS; Northern_peatlands_HL_IS; Northern_peatlands_HL_KAL; Northern_peatlands_HL_KLA; Northern_peatlands_HL_KS; Northern_peatlands_HL_LA; Northern_peatlands_HL_TE; Northern_peatlands_S1; Northern_peatlands_S11; Northern_peatlands_S13; Northern_peatlands_S2; Northern_peatlands_S3; Northern_peatlands_S31; Northern_peatlands_S32; Northern_peatlands_S33; Northern_peatlands_S4; Northern_peatlands_S41; Northern_peatlands_S42; Northern_peatlands_S43; Northern_peatlands_S5; Northern_peatlands_S51; Northern_peatlands_S52; Northern_peatlands_S53; Northern_peatlands_S6; Northern_peatlands_u10; Northern_peatlands_u13; Northern_peatlands_u14; Northern_peatlands_u16; Northern_peatlands_u18; Northern_peatlands_u2; Northern_peatlands_u24; Northern_peatlands_u26; Northern_peatlands_u29; Northern_peatlands_u33; Northern_peatlands_u43; Northern_peatlands_u52; Northern_peatlands_u62; Northern_peatlands_u65; Northern_peatlands_u70; Peatland; Peat thickness; Peucedanum palustre; pH; Pinus sylvestris; Pleurozium schreberi; Polytrichum commune; Polytrichum strictum; Potentilla palustris; Rhynchospora alba; Rubus chamaemorus; S1; S11; S13; S2; S3; S31; S32; S33; S4; S41; S42; S43; S5; S51; S52; S53; S6; Salix lapponica; Salix myrsinites; Salix myrtilloides; Salix pylicifolia; Salix repens; Scapania paludicola; Schezeria palustris; Sphagnum angustifolium; Sphagnum balticum; Sphagnum capillifolium; Sphagnum compactum; Sphagnum fallax; Sphagnum fimbriatum; Sphagnum flexuosum; Sphagnum fuscum; Sphagnum lindbergii; Sphagnum magellanicum; Sphagnum majus; Sphagnum obtusum; Sphagnum papillosum; Sphagnum platyphyllum; Sphagnum pulchrum; Sphagnum riparium; Sphagnum rubellum; Sphagnum russowii; Sphagnum squarrosum; Sphagnum subsecundum; Sphagnum tenellum; Straminergon straminergon; Trichophorum cespitosum; u10; u13; u14; u16; u18; u2; u24; u26; u29; u33; u43; u52; u62; u65; u70; Untricularia intermedia; Vaccinium micrococcus; Vaccinium oxycoccos; Vaccinium uliginosum; Vaccinium vitis-idaea; Warnstorfia exannulata; Warnstorfia fluitans
    Type: Dataset
    Format: text/tab-separated-values, 4230 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Environmental science & technology 26 (1992), S. 2122-2126 
    ISSN: 1520-5851
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract: Concentrations of two phospholipid fatty acids (PLFAs) specific for methane-oxidizing bacteria (16:1 ω8 and 18:1 ω8), were used to estimate the biomass and cell numbers of this group of bacteria in two Sphagnum-dominated boreal peatlands. Concentration ranges of 16:1 ω8 and 18:1 ω8 were 0.0–73 and 1.0–486 pmol g−1 of wet peat, respectively. Concentrations in the peat of each fatty acid were positively correlated with the potential methane oxidation activity (Vmax), which was used as an independent estimate of methanotrophic biomass. This correlation suggests that the two PLFAs are good biomarkers for the population of methanotrophic bacteria in peatlands. Concentrations of the two PLFAs were transformed to cell numbers using conversion factors for the cell content of PLFAs, average cell volume and percentage of cellular dry matter. The total cell number of methanotrophic bacteria in peat samples from a range of sites and depths ranged between 0.3 and 51 × 106 cells g−1 of wet peat, with similar proportions of type I and type II methanotrophic bacteria in most samples. Within particular peat profiles, numbers of methanotrophic bacteria were highest around the level of the water table, implying that the supplies of methane and oxygen largely determine the biomass distribution of methanotrophic bacteria in this type of peatlands.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Recent investigations have highlighted the relative importance of the winter season for emissions of N2O from boreal soils. However, our understanding of the processes and environmental controls regulating these emissions is fragmentary. Therefore, we investigated the potential for, and relative importance of, N2O formation at temperatures below 0 °C in laboratory experiments involving incubations of a Swedish boreal forest soil. Our results show that frozen soils have a high potential for N2O formation and subsequent emission. Net N2O production rates at −4 °C equaled those observed at +10 to +15 °C at moisture contents 〉60% of the soil's water-holding capacity. The source of this N2O was found to be denitrification occurring in anoxic microsites in the frozen soil and temperature per se did not control the denitrification rates at temperatures around 0 °C. Furthermore, both net nitrogenmineralisation and nitrification were observed in the frozen soil samples. Based on these findings we propose a conceptual model for the temperature response of N2O formation in soils at low temperatures.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology ecology 33 (2000), S. 0 
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The methane produced in peat soils can vary over the growing season due to variations in the supply of available substrate, the activity of the microbial community or changes in temperature. Our aim was to study how these factors regulate the methane production over the season from five different peat types of different botanical origin. Peat samples were collected on seven occasions between June and September. After each sampling, the peat soils were incubated at five different temperatures (7, 10, 15, 20 and 25°C) without added substrate, or at 20°C with added substrate (glucose, or H2/CO2, or starch). Rates of methane production averaged over the season differed significantly (P〈0.05, R2=0.76) among the five peat types, the minerotrophic lawn producing the highest rates, and the hummock peat producing the lowest. The seasonal average Q10 values for each plant community varied between 4.6 and 9.2, the highest value being associated with the ombrotrophic lawn and the lowest value with the mud-bottom plant community. For the unamended peat samples, the rates of methane production from each plant community varied significantly (P〈0.05) over the season. This implies that the quality of organic matter, in combination with changes in temperature, explains the seasonal variation in methane production. However, addition of saturating amounts of glucose, H2/CO2 or starch at 20°C significantly reduced the seasonal variation (P〈0.05) in methane production in peat from the minerotrophic lawn, wet carpet and mud-bottom plant communities. This suggests that substrate supply (e.g. root exudates) for the micro-organisms also varied over the season at these sites. Seasonal variation in methane production rates was apparent in peat from the hummock and ombrotrophic lawn plant communities even after addition of substrates, suggesting that the active biomass of the anaerobic microbial populations at these sites was regulated by other factors than the ones studied.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1546-1718
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] The dorsal hair ridge in Rhodesian and Thai Ridgeback dogs is caused by a dominant mutation that also predisposes to the congenital developmental disorder dermoid sinus. Here we show that the causative mutation is a 133-kb duplication involving three fibroblast growth factor (FGF) genes. FGFs play ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1546-1718
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] Methods are needed to identify large numbers of nucleic acid sequence variations and to clarify their biological significance. We are developing a method for identification and quantitation of DNA and RNA sequences using padlock probes. The two ends of these linear DNA probes can hybridize next to ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...