ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of geodesy 73 (1999), S. 118-124 
    ISSN: 1432-1394
    Keywords: Key words. GPS ambiguity ; Ionosphere bias
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying
    Notes: Abstract. With access to dual-frequency pseudorange and phase Global Positioning System (GPS) data, the wide-lane ambiguity can easily be fixed. Advantage is taken of this information in the linear combination of the above four observables for base ambiguity estimation (i.e. of N 1 and N 2). Starting points for our analysis are the Best Linear Unbiased Estimators BLUE1 and BLUE2. BLUE1 is the best one (with minimum mean square error, MSE) if the ionosphere effect is negligible. If this is not the case, BLUE2 has the smallest variance, but not necessarily the least mean square error. Hence, both estimators may suffer from a non-optimal treatment of the ionosphere bias. BLUE1 ignores possible ionosphere bias, while BLUE2 compensates for this bias in a less favourable way by eliminating it at the price of increased noise. As an alternative, linear estimators are derived, which make a compromise between the ionosphere bias and the random observation errors. This leads to the derivation of the Best Linear Estimator (BLE) and the Restricted Best Linear Estimator (RBLE) with minimum MSE. The former is generally not very useful, while the RBLE is recommended for practical use. It is shown that the MSE of the RBLE is limited by the variances of BLUE1 and BLUE2, i.e. However, as is always the case with a BLE, it cannot be used strictly: some parameter (in this case the ionosphere bias) must be approximately known.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of geodesy 73 (1999), S. 362-366 
    ISSN: 1432-1394
    Keywords: Key words. Atmospheric correction ; Atmospheric gravity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying
    Notes: Abstract. The well-known International Association of Geodesy (IAG) approach to the atmospheric geoid correction in connection with Stokes' integral formula leads to a very significant bias, of the order of 3.2 m, if Stokes' integral is truncated to a limited region around the computation point. The derived truncation error can be used to correct old results. For future applications a new strategy is recommended, where the total atmospheric geoid correction is estimated as the sum of the direct and indirect effects. This strategy implies computational gains as it avoids the correction of direct effect for each gravity observation, and it does not suffer from the truncation bias mentioned above. It can also easily be used to add the atmospheric correction to old geoid estimates, where this correction was omitted. In contrast to the terrain correction, it is shown that the atmospheric geoid correction is mainly of order H of terrain elevation, while the term of order H 2 is within a few millimetres.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...