ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-06
    Description: I describe a unique, 20-year-long timing program for the binary pulsar B0655+64, the stalwart control experiment for measurements of gravitational radiation damping in relativistic neutron-star binaries. Observed limits on evolution of the B0655+64 orbit provide new bounds on the existence of dipolar gravitational radiation, and hence on violation of the Strong Equivalence Principle.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-20
    Description: We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) has three key science drivers: (1) measuring the spin distribution of accreting black holes, (2) understanding the equation of state of dense matter, and (3) exploring the properties of the precursors and electromagnetic counterparts of gravitational wave sources. To perform these science investigations, STROBE-X comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER, with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT, to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with ~20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis. The STROBE-X mission concept is a rapidly repointable observatory in low-Earth orbit, similar to RXTE or Swift, and will be presented to the 2020 Astrophysics Decadal Survey for consideration as a probe-class mission.
    Keywords: Astrophysics
    Type: MSFC-E-DAA-TN64215 , Meeting of the American Astronomical Society (AAS); Jan 06, 2019 - Jan 10, 2019; Seattle,WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: MASSIM, the Milli-Arc-Second Structure Imager, is a mission that has been proposed for study within the context of NASA's "Astrophysics Strategic Mission Concept Studies" program. It uses a set of achromatic diffractive-refractive Fresnel lenses on an optics spacecraft to focus 5-11 keV X-rays onto detectors on a second spacecraft flying in formation 1000 km away. It will have a point-source sensitivity comparable with that of the current generation of major X-ray observatories (Chandra, XMM-Newton) but an angular resolution some three orders of magnitude better. MASSIM is optimized for the study of jets and other phenomena that occur in the immediate vicinity of black holes and neutron stars. It can also be used for studying other astrophysical phenomena on the milli-arc-second scale, such as those involving proto-stars, the surfaces and surroundings of nearby active stars and interacting winds. After introducing the principle of diffractive imaging in the x-ray/gamma-ray regime, the MASSIM mission concept and baseline design will be described along with a discussion of the options and trade-offs within the X-ray optics design.
    Keywords: Astrophysics
    Type: SPIE Conference; Jun 23, 2008 - Jun 28, 2008; Marseille; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: We present results of recent Neutron Star Interior Composition Explorer (NICER) observations of the accreting millisecond X-ray pulsar (AMXP) IGR J17062-6143 that show that it resides in a circular, ultracompact binary with a 38-minute orbital period. NICER observed the source for 26 kiloseconds over a 5.3-day span in 2017 August, and again for 14 and 11 kiloseconds in 2017 October and November, respectively. A power spectral analysis of the August exposure confirms the previous detection of pulsations at 163.656 Hertz in Rossi X-ray Timing Explorer (RXTE) data, and reveals phase modulation due to orbital motion of the neutron star. A coherent search for the orbital solution using the Z squared method finds a best-fitting circular orbit with a period of 2278.21 seconds (37.97 minutes), a projected semimajor axis of 0.00390 lt-s (Localization Test Statistic), and a barycentric pulsar frequency of 163.6561105 Hertz. This is currently the shortest known orbital period for an AMXP. The mass function is 9.12 times 10 (sup minus 8) solar mass, presently the smallest known for a stellar binary. The minimum donor mass ranges from approximately 0.005 to 0.007 times the solar mass for a neutron star mass from 1.2 to 2 times the solar mass. Assuming mass transfer is driven by gravitational radiation, we find donor mass and binary inclination bounds of 0.0175-0.0155 times the solar mass and 19 degrees less than i less than 27.5 degrees, where the lower and upper bounds correspond to 1.4 and 2 times the solar mass neutron stars, respectively. Folding the data accounting for the orbital modulation reveals a sinusoidal profile with fractional amplitude 2.04 plus or minus 0.11 percent (0.3-3.2 kiloelectronvolts).
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN61305 , Astrophysical Journal (ISSN 2041-8205) (e-ISSN 2041-8213); 858; 2; L13
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: We analyze dispersion measure(DM) variations of 37 millisecond pulsars in the nine-year North American Nanohertz Observatory for Gravitational Waves (NANOGrav) data release and constrain the sources of these variations. DM variations can result from a changing distance between Earth and the pulsar, inhomogeneities in the interstellar medium, and solar effects. Variations are significant for nearly all pulsars, with characteristic timescales comparable to or even shorter than the average spacing between observations. Five pulsars have periodic annual variations, 14 pulsars have monotonically increasing or decreasing trends, and 14 pulsars show both effects. Of the four pulsars with linear trends that have line-of-sight velocity measurements, three are consistent with a changing distance and require an overdensity of free electrons local to the pulsar. Several pulsars show correlations between DM excesses and lines of sight that pass close to the Sun. Mapping of the DM variations as a function of the pulsar trajectory can identify localized interstellar medium features and, in one case, an upper limit to the size of the dispersing region of 4 au. Four pulsars show roughly Kolmogorov structure functions (SFs), and another four show SFs less steep than Kolmogorov. One pulsar has too large an uncertainty to allow comparisons. We discuss explanations for apparent departures from a Kolmogorov-like spectrum, and we show that the presence of other trends and localized features or gradients in the interstellar medium is the most likely cause.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN45943 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 841; 2; 125
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: We search for an isotropic stochastic gravitational-wave background (GWB) in the newly released 11 year data set from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). While we find no evidence for a GWB, we place constraints on a population of inspiraling supermassive black hole (SMBH) binaries, a network of decaying cosmic strings, and a primordial GWB. For the first time, we find that the GWB constraints are sensitive to the solar system ephemeris (SSE) model used and that SSE errors can mimic a GWB signal. We developed an approach that bridges systematic SSE differences, producing the first pulsar-timing array (PTA) constraints that are robust against SSE errors. We thus place a 95% upper limit on the GW-strain amplitude of A (sub GWB) 〈 1.45 10 (exp -15) at a frequency of f=1 yr(exp -1) for a fiducial f (exp -2/3) power-law spectrum and with interpulsar correlations modeled. This is a factor of approximately 2 improvement over the NANOGrav nine-year limit calculated using the same procedure. Previous PTA upper limits on the GWB (as well as their astrophysical and cosmological interpretations) will need revision in light of SSE systematic errors. We use our constraints to characterize the combined influence on the GWB of the stellar mass density in galactic cores, the eccentricity of SMBH binaries, and SMBH-galactic-bulge scaling relationships. We constrain the cosmic-string tension using recent simulations, yielding an SSE-marginalized 95% upper limit of G (sub mu) 〈 5.3 10(exp -11) - a factor of approximately 2 better than the published NANOGrav nine-year constraints. Our SSE-marginalized 95% upper limit on the energy density of a primordial GWB (for a radiation-dominated post-inflation universe) is omega (sub GWB)(f) h (exp 2) 〈 3.4 10 (exp -10).
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN59128 , Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 859; 1; 47
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: We present Neutron Star Interior Composition Explorer (NICER) observations of the neutron star (NS) low-mass X-ray binary Serpens X-1 during the early mission phase in 2017. With the high spectral sensitivity and low-energy X-ray passband of NICER, we are able to detect the Fe L line complex in addition to the signature broad, asymmetric Fe K line. We confirm the presence of these lines by comparing the NICER data to archival observations with XMM-Newton/Reflection Grating Spectrometer (RGS) and NuSTAR. Both features originate close to the innermost stable circular orbit (ISCO). When modeling the lines with the relativistic line model RELLINE, we find that the Fe L blend requires an inner disk radius of 1.4(sup 0.2, sub -0.1)R(sub ISCO) and Fe K is at 1.03(sup 0.13, sub -0.03)R(sub ISCO) (errors quoted at 90%). This corresponds to a position of 17(sup 2.5, sub -1.2)km and 12(sup 1.6, sub -0.4)km for a canonical NS mass (M(sub NS)=1.4 solar mass) and dimensionless spin value of a = 0. Additionally, we employ a new version of the RELXILL model tailored for NS(sub s) and determine that these features arise from a dense disk and supersolar Fe abundance.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN57931 , The Astrophysical Journal Letters (ISSN 2041-8205) (e-ISSN 2041-8213); 858; L5; No. 1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: We compute upper limits on the nanohertz-frequency isotropic stochastic gravitational wave background (GWB) using the 9 year data set from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) collaboration. Well-tested Bayesian techniques are used to set upper limits on the dimensionless strain amplitude (at a frequency of 1 yr(exp -1) for a GWB from supermassive black hole binaries of A(sub gw) less than 1.5 x 10(exp -15). We also parameterize the GWB spectrum with a broken power-law model by placing priors on the strain amplitude derived from simulations of Sesana and McWilliams et al. Using Bayesian model selection we find that the data favor a broken power law to a pure power law with odds ratios of 2.2 and 22 to one for the Sesana and McWilliams prior models, respectively. Using the broken power-law analysis we construct posterior distributions on environmental factors that drive the binary to the GW-driven regime including the stellar mass density for stellar-scattering, mass accretion rate for circumbinary disk interaction, and orbital eccentricity for eccentric binaries, marking the first time that the shape of the GWB spectrum has been used to make astrophysical inferences. Returning to a power-law model, we place stringent limits on the energy density of relic GWs, OMEGA(sub gw) (f) h squared less than 4.2 x 10(exp -10). Our limit on the cosmic string GWB, OMEGA(sub gw) (f) h squared less than 2.2 x 10(exp -10), translates to a conservative limit on the cosmic string tension with G mu less than 3.3 x 10(exp -8), a factor of four better than the joint Planck and high-l cosmic microwave background data from other experiments.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN50841 , GSFC-E-DAA-TN48302 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 821; 1; 13
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: We report on a Neutron star Interior Composition Explorer (NICER) observation of the Galactic X-ray binary and stellar-mass black hole candidate, MAXI J1535571. The source was likely observed in an "intermediate" or "very high" state, with important contributions from both an accretion disk and hard X-ray corona. The 2.3-10 keV spectrum shows clear hallmarks of relativistic disk reflection. Fits with a suitable model strongly indicate a nearmaximal spin parameter of a = cJ/GM(exp 2) = 0.994(2) and a disk that extends close to the innermost stable circular orbit, r/r(sub ISCO) = 1.08(8) (1 statistical errors). In addition to the relativistic spectrum from the innermost disk, a relatively narrow Fe K emission line is also required. The resolution of NICER reveals that the narrow line may be asymmetric, indicating a specific range of emission radii. Fits with a relativistic line model suggest an inner radius of r = 144 +140/-60 GM/c(exp 2) for the putative second reflection geometry; full reflection models suggest that radii a few times larger are possible. The origin of the narrow line is uncertain, but a warp likely provides the most physically plausible explanation. We discuss our results in terms of the potential for NICER to reveal new features of the inner and intermediate accretion disk around black holes.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN60607 , Astrophysical Journal Letters (ISSN 2041-8205) (e-ISSN 2041-8213); 860; 2; L28
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-24
    Description: The Neutron Star Interior Composition Explorer (NICER) on the International Space Station (ISS) observed strong photospheric expansion of the neutron star in 4U182030 during a Type I X-ray burst. A thermonuclear helium flash in the stars envelope powered a burst that reached the Eddington limit. Radiation pressure pushed the photosphere out to 200 km, while the blackbody temperature dropped to 0.45 keV. Previous observations of similar bursts were performed with instruments that are sensitive only above 3 keV, and the burst signal was weak at low temperatures. NICERs 0.212 keV passband enables the first complete detailed observation of strong expansion bursts. The strong expansion lasted only 0.6 s, and was followed by moderate expansion with a 20 km apparent radius, before the photosphere finally settled back down at 3 s after the burst onset. In addition to thermal emission from the neutron star, the NICER spectra reveal a second component that is well fit by optically thick Comptonization. During the strong expansion, this component is six times brighter than prior to the burst, and it accounts for 71% of the flux. In the moderate expansion phase, the Comptonization flux drops, while the thermal component brightens, and the total flux remains constant at the Eddington limit. We speculate that the thermal emission is reprocessed in the accretion environment to form the Comptonization component, and that changes in the covering fraction of the star explain the evolution of the relative contributions to the total flux.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN66164 , The Astrophysical Journal Letters (ISSN 2041-8205) (e-ISSN 2041-8213); 856; 2; L37
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...