ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geophysics  (20)
  • Lunar and Planetary Science and Exploration; Inorganic, Organic and Physical Chemistry  (2)
  • Astrophysics; Lunar and Planetary Science and Exploration  (1)
  • 1
    Publication Date: 2018-06-11
    Description: carbonaceous chondrites are of the major interest since they contain one of the most primitive organic matters. However, aqueous alteration has more or less overprinted their original features in a way that needed to be assessed. That was done in the present study by comparing the mineralogy of the most altered CR1 chondrite, GRO 95577, to a less altered CR2, Renazzo. Their modal analyses were achieved thanks to a new method, based on X-ray elemental maps acquired on electron microprobe, and on IDL image treatment. It allowed the collection of new data on the composition of Renazzo and confirmed the classification of GRO 95577 as a CR1. New alteration products for CRs, vermiculite and clinochlore, were observed. The homogeneity of the Fe-poor clays in the CR1 and the distinctive matrix composition in the two chondrites suggest a wide-range of aqueous alteration on CRs. The preservation of the outlines of the chondrules in GRO 95577 and the elemental transfers of Al, Fe and Ca throughout the chondrule and of Fe and S from the matrix to the chondrule favor the idea of an asteroidal location of the aqueous alteration. From their mineralogical descriptions and modal abundances, the element repartitions in Renazzo and GRO 95577 were computed. It indicates a possible relationship between these two chondrites via an isochemical alteration process. Knowing the chemical reactions that occurred during the alteration, it was thus possible to decipher the mineralogical modal abundances in the unaltered CR body.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: Mineralogical and textural evidence from chondritic meteorites for the nature of aqueous fluids on asteroids. Additional information is contained in the original extended abstract.
    Keywords: Geophysics
    Type: Eleventh Annual V. M. Goldschmidt Conference; LPI-Contrib-1088
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: Early solar system aqueous fluids are preserved in some H chondrites as aqueous fluid inclusions in halite (e.g., [1]). Although potential fluid inclusions are also expected in carbonaceous chondrites [2], they have not been surely confirmed. In order to search for these fluid inclusions, we have developped a new X-ray micro-tomography technique combined with FIB sampling and applied this techniqu to a carbanaceous chondrite. Experimental: A polished thin section of Sutter's Mill meteorite (CM) was observed with an optical microscope and FE-SEM (JEOL 7001F) for chosing mineral grains of carbonates (mainly calcite) and sulfides (FeS and ZnS) 20-50 microns in typical size, which may have aqueous fluid inclusions. Then, a "house" similar to a cube with a roof (20-30 microns in size) is sampled from the mineral grain by using FIB (FEI Quanta 200 3DS). Then, the house was atached to a thin W-needle by FIB and imaged by a SR-based imaging microtomography system with a Fresnel zone plate at beamline BL47XU, SPring-8, Japan. One sample was imaged at two X-ray energies, 7 and 8 keV, to identify mineral phases (dual-enegy microtomography: [3]). The size of voxel (pixel in 3D) was 50-80 nm, which gave the effective spatial resolution of approx. 200 nm. A terrestrial quartz sample with an aqueous fluid inclusion with a bubble was also examined as a test sample by the same method. Results and discussion: A fluid inclusion of 5-8 microns in quartz was clearly identified in a CT image. A bubble of approx. 4 microns was also identified as refraction contrast although the X-ray absorption difference between fluid and bubble is small. Volumes of the fluid and bubble were obtained from the 3D CT images. Fourteen grains of calcite, two grains of iron sulfide and one grain of (Zn,Fe)S were examined. Ten calcite, one iron sulfide and one (Zn,Fe)S grains have inclusions 〉1 micron in size (the maximum: approx. 5 microns). The shapes are spherical or irregular. Tiny inclusions (〈1 micron) are also present in all the grains examined. These results show that mineral grains have more inclusions than expected from 2D observations. The X-ray absorption of the inclusions shows that they are not solid inclusions. No bubbles were observed inside, indicating that we cannot determine whether they are really aqueous fluids or merely voids. One calcite grain has an inclusion approx. 2 microns in size, which seems to have a bubble and a tiny solid daughter crystal inside (three-phase inclusion). As we know the exact 3D position of the inclusion, we will anlyze the inclusion by SIMS after freezing the sample as has been done for a halite sample [3]. The present technique is useful for finding small inclusions not only in carbonaceous chondrites but also for terrestrial materials.
    Keywords: Geophysics
    Type: JSC-CN-31633 , Annual Meeting of the Meteoritical Society; Sep 07, 2014 - Sep 12, 2014; Casablanca; Morocco
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: Monahans meteorite (H5) contains fluid inclusion- bearing halite (NaCl) crystals [1]. Microthermometry and Raman spectroscopy showed that the fluid in the inclusions is an aqueous brine and they were trapped near 25degC [1]. Their continued presence in the halite grains requires that their incorporation into the H chondrite asteroid was post metamorphism [2]. Abundant solid inclusions are also present in the halites. The solid inclusions include abundant and widely variable organics [2]. Analyses by Raman microprobe, SEM/EDX, synchrotron X-ray diffraction and TEM reveal that these grains include macromolecular carbon similar in structure to CV3 chondrite matrix carbon, aliphatic carbon compounds, olivine (Fo9959), high- and low-Ca pyroxene, feldspars, magnetite, sulfides, lepidocrocite, carbonates, diamond, apatite and possibly the zeolite phillipsite [3]. Here we report organic analyses of these carbonaceous residues in Monahans halite using C-, N-, and O- X-ray absorption near edge structure (XANES). Samples and Methods: Approximately 100 nm-thick sections were extracted with a focused ion beam (FIB) at JSC from solid inclusions from Monahans halite. The sections were analyzed using the scanning transmission X-ray microscope (STXM) on beamline 5.3.2.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory for XANES spectroscopy. Results and Discussion: C-XANES spectra of the solid inclusions show micrometer-scale heterogeneity, indicating that the macromolecular carbon in the inclusions have complex chemical variations. C-XANES features include 284.7 eV assigned to aromatic C=C, 288.4-288.8 eV assigned to carboxyl, and 290.6 eV assigned to carbonate. The carbonyl features obtained by CXANES might have been caused by the FIB used in sample preparation. No specific N-XANES features are observed. The CXANES spectra obtained from several areas in the FIB sections include type 1&2 chondritic IOM like, type 3 chondritic IOM like, and none of the above. The natures of the macromolecular carbon in the solid inclusions observed by C-XANES are consistent with the previous studies showing that the carbonaceous solid inclusions have not originated from Monahans parent body [1-3], and have various origins, including various chondritic meteorite parent bodies as well as other unknown source(s).
    Keywords: Geophysics
    Type: JSC-CN-31632 , Annual Meeting of the Meteoritical Society; Sep 07, 2014 - Sep 12, 2014; Casablanca; Morocco
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Solid evidence of liquid water in primitive meteorites is given by the ordinary chondrites H5 Monahans (1998) and H3-6 Zag. Aqueous fluid inclusion-bearing halite (NaCl) crystals were shown to be common in Zag. These striking blue/purple crystals (Figure 1), which gained the coloration from electron-trapping in the Cl-vacancies through exposure to ionizing radiation, were determined to be over 4.0-4.7 billion years old by I-Xe dating. The halite grains are present as discrete grains within an H-chondrite matrix with no evidence for aqueous alteration that indicates a xenogenic source, possibly ancient cryovolcanism. They were proposed to be formed from the cryovolcanic plumes on icy C-type asteroids (possibly Ceres), and were transferred and incorporated into the H chondrite parent asteroid following the eruption event(s). A unique aspect of these halites is that they contain abundant solid inclusions hosted within the halites alongside the water inclusions. The solid inclusions were suggested to be entrained within the fluid erupted from the cryovolcanic event(s), and were shown to be comprised of abundant organics. Spectrofluorometric study and Raman imaging of the halites have identified macromolecular carbon and aliphatic carbon compounds. In order to investigate the type of organics present in Zag and in particular within the fluid-bearing halites, we studied for the first time the amino acid contents of a selected mineral (halite) phase in a meteorite sample.
    Keywords: Geophysics
    Type: JSC-CN-35255 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Since the 1980s, more than 20 thermally metamorphosed carbonaceous chondrites (TMCCs) have been found in Antarctica and in hot deserts. The petrology of TMCCs suggests that some C-type asteroids were heated and dehydrated after aqueous alteration. Besides, previous studies indicate that the conditions of thermal metamorphism experienced by these meteorites may have been quite variable. It reflects that metamorphism of the TMCCs was complex.
    Keywords: Geophysics
    Type: JSC-CN-35128 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Amoeboid olivine aggregates (AOAs) are important refractory components of carbonaceous chondrites and have been interpreted to represent solar nebular condensates that experienced high-temperature annealing, but largely escaped melting. In addition, because AOAs in primitive chondrites are composed of fine-grained minerals (forsterite, anorthite, spinel) that are easily modified during post crystallization alteration, the mineralogy of AOAs can be used as a sensitive indicator of metamorphic or alteration processes. AOAs in CR chondrites are particularly important because they show little evidence for secondary alteration. In addition, some CR AOAs contain Mn-enriched forsterite (aka low-iron, Mn-enriched or LIME olivine), which is an indicator of nebular formation conditions. Here we report preliminary results of the mineralogy and petrology of AOAs in Antarctic CR chondrites, and compare them to those in other carbonaceous chondrites.
    Keywords: Geophysics
    Type: JSC-CN-35134 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The process responsible for the mass independent oxygen isotope variation observed in Solar System materials remains poorly understood. While self-shielding of CO, either in the early solar nebula, or precursor molecular cloud, appears to be a viable mechanism, alternative models have also been proposed.
    Keywords: Astrophysics; Lunar and Planetary Science and Exploration
    Type: JSC-CN-35141 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The Stardust Mission returned a large abundance of impactors from Comet 81P/Wild2 in the 5-30 m range. The preliminary examination of just a limited number of these particles showed that the collection captured abundant crystalline grains with a diverse mineralogy [1,2]. Many of these grains resemble those found in chondrite matrix and even contain fragments of chondrules and CAIs [1-3]. In particular, the olivine found in Wild 2 exhibits a wide compositional range (Fa0-97) with minor element abundances similar to the matrix olivine found in many carbonaceous chondrites (CCs) and unequilibrated ordinary chondrites (UOCs). Despite the wide distribution of Fa content, the olivine found in the matrices of CCs, UOCs, and Wild 2 can be roughly lumped into two types based solely on fayalite content. In fact, in some cases, a distinct bi-modal distribution is observed.
    Keywords: Geophysics
    Type: JSC-CN-25686 , 43rd Lunar and Planetary Science Conference; Mar 19, 2012 - Mar 23, 2012; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: Carbonaceous chondrites exhibit a wide range of aqueous and thermal alteration characteristics. Examples of the thermally metamorphosed carbonaceous chondrites (TMCCs) include the C2-ung/CM2TIVs Belgica (B)-7904 and Yamato (Y) 86720. The alteration extent is the most complete in these meteorites and thus they are considered typical end-members of TMCCs exhibiting complete dehydration of matrix phyllosilicates [1, 2]. The estimated heating conditions are 10 to 10(sup 3) days at 700 C to 1 to 100 hours at 890 C, i.e. short-term heating induced by impact and/or solar radiation [3]. The chemical and bulk oxygen isotopic compositions of the matrix of the carbonate (CO3)-poor lithology of the Tagish Lake (hereafter Tag) meteorite bears similarities to these TMCCs [4]. We investigated the experimentally-heated Tag with the use of Raman spectroscopy to understand how short-term heating affects the maturity of insoluble organic matter (IOM) in aqueously altered meteorites.
    Keywords: Lunar and Planetary Science and Exploration; Inorganic, Organic and Physical Chemistry
    Type: JSC-CN-36530 , METSOC Annual Meeting; Aug 07, 2016 - Aug 12, 2016; Berlin; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...