ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Astronomy; Solar Physics; Plasma Physics  (1)
  • Planetary magnetosphere  (1)
Collection
Keywords
Publisher
Years
  • 1
    ISSN: 1573-0956
    Keywords: Planetary magnetosphere ; field line resonance ; coupling ; elastic wave modes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Planetary magnetospheres are natural laboratories for many interesting plasma physical processes which are difficult to study under normal laboratory conditions. Among the major processes occurring in space plasmas are the reconnection phenomenon and field line resonances. This paper deals with the second of these processes. A field line resonance is the resonant coupling between an isotropic mode and an anisotropic mode in a magnetized plasma. Field line resonances allow us to understand many features of ultra-low frequency oscillations in the terrestrial magnetosphere, that is resonant mode coupling is the current paradigm to explain geomagnetic pulsations. A brief historical introduction as well as a physical description of the field line resonance is given. Resonant mode coupling is discussed for the terrestrial, Hermean (Mercury), and Kronian (Saturn) magnetospheres, which represent natural laboratories with different conditions such as size of the laboratory, the background plasma density and composition, and the strength of the magnetic field. This comparative approach allows a deeper insight into the critical coupling problem than an isolated study of the terrestrial field line resonance phenomenon. Finally, resonant mode coupling between elastic wave modes in the solid Earth is briefly tackled and compared with the magnetospheric situation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Plasma waves and instabilities are integrally involved with the plasma "pickup" process and the mass loading of the solar wind (thus the formation of ion tails and the magnetic tails). Anisotropic plasmas generated by solar wind-comet interactions (the bow shock, magnetic field pileup) cause the generation of plasma waves which in turn "smooth out" these discontinuities. The plasma waves evolve and form plasma turbulence. Comets are perhaps the best "laboratories" to study waves and turbulence because over time (and distance) one can identify the waves and their evolution. We will argue that comets in some ways are better laboratories than magnetospheres, interplanetary space and fusion devices to study nonlinear waves and their evolution.
    Keywords: Astronomy; Solar Physics; Plasma Physics
    Type: American Geophysical Union (AGU) Fall Meeting 2015; Dec 14, 2015 - Dec 18, 2015; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...